Metamath Proof Explorer


Theorem comfeqd

Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfeqd.1 φcompC=compD
comfeqd.2 φHom𝑓C=Hom𝑓D
Assertion comfeqd φcomp𝑓C=comp𝑓D

Proof

Step Hyp Ref Expression
1 comfeqd.1 φcompC=compD
2 comfeqd.2 φHom𝑓C=Hom𝑓D
3 1 oveqd φxycompCz=xycompDz
4 3 oveqd φgxycompCzf=gxycompDzf
5 4 ralrimivw φgyHomCzgxycompCzf=gxycompDzf
6 5 ralrimivw φfxHomCygyHomCzgxycompCzf=gxycompDzf
7 6 ralrimivw φzBaseCfxHomCygyHomCzgxycompCzf=gxycompDzf
8 7 ralrimivw φyBaseCzBaseCfxHomCygyHomCzgxycompCzf=gxycompDzf
9 8 ralrimivw φxBaseCyBaseCzBaseCfxHomCygyHomCzgxycompCzf=gxycompDzf
10 eqid compC=compC
11 eqid compD=compD
12 eqid HomC=HomC
13 eqidd φBaseC=BaseC
14 2 homfeqbas φBaseC=BaseD
15 10 11 12 13 14 2 comfeq φcomp𝑓C=comp𝑓DxBaseCyBaseCzBaseCfxHomCygyHomCzgxycompCzf=gxycompDzf
16 9 15 mpbird φcomp𝑓C=comp𝑓D