Metamath Proof Explorer


Theorem con3ALT

Description: Proof of con3 from its associated inference con3i that illustrates the use of the weak deduction theorem dedt . (Contributed by NM, 27-Jun-2002) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019) Revised dedt and elimh . (Revised by Steven Nguyen, 27-Apr-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion con3ALT φ ψ ¬ ψ ¬ φ

Proof

Step Hyp Ref Expression
1 id if- φ ψ ψ φ ψ if- φ ψ ψ φ ψ
2 1 notbid if- φ ψ ψ φ ψ ¬ if- φ ψ ψ φ ¬ ψ
3 2 imbi1d if- φ ψ ψ φ ψ ¬ if- φ ψ ψ φ ¬ φ ¬ ψ ¬ φ
4 imbi2 if- φ ψ ψ φ ψ φ if- φ ψ ψ φ φ ψ
5 imbi2 if- φ ψ ψ φ φ φ if- φ ψ ψ φ φ φ
6 id φ φ
7 4 5 6 elimh φ if- φ ψ ψ φ
8 7 con3i ¬ if- φ ψ ψ φ ¬ φ
9 3 8 dedt φ ψ ¬ ψ ¬ φ