| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( ( if- ( ( 𝜑  →  𝜓 ) ,  𝜓 ,  𝜑 )  ↔  𝜓 )  →  ( if- ( ( 𝜑  →  𝜓 ) ,  𝜓 ,  𝜑 )  ↔  𝜓 ) ) | 
						
							| 2 | 1 | notbid | ⊢ ( ( if- ( ( 𝜑  →  𝜓 ) ,  𝜓 ,  𝜑 )  ↔  𝜓 )  →  ( ¬  if- ( ( 𝜑  →  𝜓 ) ,  𝜓 ,  𝜑 )  ↔  ¬  𝜓 ) ) | 
						
							| 3 | 2 | imbi1d | ⊢ ( ( if- ( ( 𝜑  →  𝜓 ) ,  𝜓 ,  𝜑 )  ↔  𝜓 )  →  ( ( ¬  if- ( ( 𝜑  →  𝜓 ) ,  𝜓 ,  𝜑 )  →  ¬  𝜑 )  ↔  ( ¬  𝜓  →  ¬  𝜑 ) ) ) | 
						
							| 4 |  | imbi2 | ⊢ ( ( if- ( ( 𝜑  →  𝜓 ) ,  𝜓 ,  𝜑 )  ↔  𝜓 )  →  ( ( 𝜑  →  if- ( ( 𝜑  →  𝜓 ) ,  𝜓 ,  𝜑 ) )  ↔  ( 𝜑  →  𝜓 ) ) ) | 
						
							| 5 |  | imbi2 | ⊢ ( ( if- ( ( 𝜑  →  𝜓 ) ,  𝜓 ,  𝜑 )  ↔  𝜑 )  →  ( ( 𝜑  →  if- ( ( 𝜑  →  𝜓 ) ,  𝜓 ,  𝜑 ) )  ↔  ( 𝜑  →  𝜑 ) ) ) | 
						
							| 6 |  | id | ⊢ ( 𝜑  →  𝜑 ) | 
						
							| 7 | 4 5 6 | elimh | ⊢ ( 𝜑  →  if- ( ( 𝜑  →  𝜓 ) ,  𝜓 ,  𝜑 ) ) | 
						
							| 8 | 7 | con3i | ⊢ ( ¬  if- ( ( 𝜑  →  𝜓 ) ,  𝜓 ,  𝜑 )  →  ¬  𝜑 ) | 
						
							| 9 | 3 8 | dedt | ⊢ ( ( 𝜑  →  𝜓 )  →  ( ¬  𝜓  →  ¬  𝜑 ) ) |