Metamath Proof Explorer


Theorem con3ALT

Description: Proof of con3 from its associated inference con3i that illustrates the use of the weak deduction theorem dedt . (Contributed by NM, 27-Jun-2002) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019) Revised dedt and elimh . (Revised by Steven Nguyen, 27-Apr-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion con3ALT ( ( 𝜑𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 id ( ( if- ( ( 𝜑𝜓 ) , 𝜓 , 𝜑 ) ↔ 𝜓 ) → ( if- ( ( 𝜑𝜓 ) , 𝜓 , 𝜑 ) ↔ 𝜓 ) )
2 1 notbid ( ( if- ( ( 𝜑𝜓 ) , 𝜓 , 𝜑 ) ↔ 𝜓 ) → ( ¬ if- ( ( 𝜑𝜓 ) , 𝜓 , 𝜑 ) ↔ ¬ 𝜓 ) )
3 2 imbi1d ( ( if- ( ( 𝜑𝜓 ) , 𝜓 , 𝜑 ) ↔ 𝜓 ) → ( ( ¬ if- ( ( 𝜑𝜓 ) , 𝜓 , 𝜑 ) → ¬ 𝜑 ) ↔ ( ¬ 𝜓 → ¬ 𝜑 ) ) )
4 imbi2 ( ( if- ( ( 𝜑𝜓 ) , 𝜓 , 𝜑 ) ↔ 𝜓 ) → ( ( 𝜑 → if- ( ( 𝜑𝜓 ) , 𝜓 , 𝜑 ) ) ↔ ( 𝜑𝜓 ) ) )
5 imbi2 ( ( if- ( ( 𝜑𝜓 ) , 𝜓 , 𝜑 ) ↔ 𝜑 ) → ( ( 𝜑 → if- ( ( 𝜑𝜓 ) , 𝜓 , 𝜑 ) ) ↔ ( 𝜑𝜑 ) ) )
6 id ( 𝜑𝜑 )
7 4 5 6 elimh ( 𝜑 → if- ( ( 𝜑𝜓 ) , 𝜓 , 𝜑 ) )
8 7 con3i ( ¬ if- ( ( 𝜑𝜓 ) , 𝜓 , 𝜑 ) → ¬ 𝜑 )
9 3 8 dedt ( ( 𝜑𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) )