| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( ( if- ( ( 𝜑 → 𝜓 ) , 𝜓 , 𝜑 ) ↔ 𝜓 ) → ( if- ( ( 𝜑 → 𝜓 ) , 𝜓 , 𝜑 ) ↔ 𝜓 ) ) |
| 2 |
1
|
notbid |
⊢ ( ( if- ( ( 𝜑 → 𝜓 ) , 𝜓 , 𝜑 ) ↔ 𝜓 ) → ( ¬ if- ( ( 𝜑 → 𝜓 ) , 𝜓 , 𝜑 ) ↔ ¬ 𝜓 ) ) |
| 3 |
2
|
imbi1d |
⊢ ( ( if- ( ( 𝜑 → 𝜓 ) , 𝜓 , 𝜑 ) ↔ 𝜓 ) → ( ( ¬ if- ( ( 𝜑 → 𝜓 ) , 𝜓 , 𝜑 ) → ¬ 𝜑 ) ↔ ( ¬ 𝜓 → ¬ 𝜑 ) ) ) |
| 4 |
|
imbi2 |
⊢ ( ( if- ( ( 𝜑 → 𝜓 ) , 𝜓 , 𝜑 ) ↔ 𝜓 ) → ( ( 𝜑 → if- ( ( 𝜑 → 𝜓 ) , 𝜓 , 𝜑 ) ) ↔ ( 𝜑 → 𝜓 ) ) ) |
| 5 |
|
imbi2 |
⊢ ( ( if- ( ( 𝜑 → 𝜓 ) , 𝜓 , 𝜑 ) ↔ 𝜑 ) → ( ( 𝜑 → if- ( ( 𝜑 → 𝜓 ) , 𝜓 , 𝜑 ) ) ↔ ( 𝜑 → 𝜑 ) ) ) |
| 6 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
| 7 |
4 5 6
|
elimh |
⊢ ( 𝜑 → if- ( ( 𝜑 → 𝜓 ) , 𝜓 , 𝜑 ) ) |
| 8 |
7
|
con3i |
⊢ ( ¬ if- ( ( 𝜑 → 𝜓 ) , 𝜓 , 𝜑 ) → ¬ 𝜑 ) |
| 9 |
3 8
|
dedt |
⊢ ( ( 𝜑 → 𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) ) |