Metamath Proof Explorer


Theorem con4bid

Description: A contraposition deduction. (Contributed by NM, 21-May-1994)

Ref Expression
Hypothesis con4bid.1 φ¬ψ¬χ
Assertion con4bid φψχ

Proof

Step Hyp Ref Expression
1 con4bid.1 φ¬ψ¬χ
2 1 biimprd φ¬χ¬ψ
3 2 con4d φψχ
4 1 biimpd φ¬ψ¬χ
5 3 4 impcon4bid φψχ