Metamath Proof Explorer


Theorem confun4

Description: An attempt at derivative. Resisted simplest path to a proof. (Contributed by Jarvin Udandy, 6-Sep-2020)

Ref Expression
Hypotheses confun4.1 φ
confun4.2 φψψ
confun4.3 ψφχ
confun4.4 χθφθψ
confun4.5 τχθ
confun4.6 η¬χχ¬χ
confun4.7 ψ
confun4.8 χθ
Assertion confun4 χψτ

Proof

Step Hyp Ref Expression
1 confun4.1 φ
2 confun4.2 φψψ
3 confun4.3 ψφχ
4 confun4.4 χθφθψ
5 confun4.5 τχθ
6 confun4.6 η¬χχ¬χ
7 confun4.7 ψ
8 confun4.8 χθ
9 7 3 ax-mp φχ
10 1 9 ax-mp χ
11 bicom1 τχθχθτ
12 5 11 ax-mp χθτ
13 12 biimpi χθτ
14 8 13 ax-mp τ
15 7 14 pm3.2i ψτ
16 pm3.4 ψτψτ
17 15 16 ax-mp ψτ
18 10 17 pm3.2i χψτ
19 pm3.4 χψτχψτ
20 18 19 ax-mp χψτ