| Step | Hyp | Ref | Expression | 
						
							| 1 |  | confun4.1 | ⊢ 𝜑 | 
						
							| 2 |  | confun4.2 | ⊢ ( ( 𝜑  →  𝜓 )  →  𝜓 ) | 
						
							| 3 |  | confun4.3 | ⊢ ( 𝜓  →  ( 𝜑  →  𝜒 ) ) | 
						
							| 4 |  | confun4.4 | ⊢ ( ( 𝜒  →  𝜃 )  →  ( ( 𝜑  →  𝜃 )  ↔  𝜓 ) ) | 
						
							| 5 |  | confun4.5 | ⊢ ( 𝜏  ↔  ( 𝜒  →  𝜃 ) ) | 
						
							| 6 |  | confun4.6 | ⊢ ( 𝜂  ↔  ¬  ( 𝜒  →  ( 𝜒  ∧  ¬  𝜒 ) ) ) | 
						
							| 7 |  | confun4.7 | ⊢ 𝜓 | 
						
							| 8 |  | confun4.8 | ⊢ ( 𝜒  →  𝜃 ) | 
						
							| 9 | 7 3 | ax-mp | ⊢ ( 𝜑  →  𝜒 ) | 
						
							| 10 | 1 9 | ax-mp | ⊢ 𝜒 | 
						
							| 11 |  | bicom1 | ⊢ ( ( 𝜏  ↔  ( 𝜒  →  𝜃 ) )  →  ( ( 𝜒  →  𝜃 )  ↔  𝜏 ) ) | 
						
							| 12 | 5 11 | ax-mp | ⊢ ( ( 𝜒  →  𝜃 )  ↔  𝜏 ) | 
						
							| 13 | 12 | biimpi | ⊢ ( ( 𝜒  →  𝜃 )  →  𝜏 ) | 
						
							| 14 | 8 13 | ax-mp | ⊢ 𝜏 | 
						
							| 15 | 7 14 | pm3.2i | ⊢ ( 𝜓  ∧  𝜏 ) | 
						
							| 16 |  | pm3.4 | ⊢ ( ( 𝜓  ∧  𝜏 )  →  ( 𝜓  →  𝜏 ) ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( 𝜓  →  𝜏 ) | 
						
							| 18 | 10 17 | pm3.2i | ⊢ ( 𝜒  ∧  ( 𝜓  →  𝜏 ) ) | 
						
							| 19 |  | pm3.4 | ⊢ ( ( 𝜒  ∧  ( 𝜓  →  𝜏 ) )  →  ( 𝜒  →  ( 𝜓  →  𝜏 ) ) ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ ( 𝜒  →  ( 𝜓  →  𝜏 ) ) |