| Step | Hyp | Ref | Expression | 
						
							| 1 |  | confun4.1 |  |-  ph | 
						
							| 2 |  | confun4.2 |  |-  ( ( ph -> ps ) -> ps ) | 
						
							| 3 |  | confun4.3 |  |-  ( ps -> ( ph -> ch ) ) | 
						
							| 4 |  | confun4.4 |  |-  ( ( ch -> th ) -> ( ( ph -> th ) <-> ps ) ) | 
						
							| 5 |  | confun4.5 |  |-  ( ta <-> ( ch -> th ) ) | 
						
							| 6 |  | confun4.6 |  |-  ( et <-> -. ( ch -> ( ch /\ -. ch ) ) ) | 
						
							| 7 |  | confun4.7 |  |-  ps | 
						
							| 8 |  | confun4.8 |  |-  ( ch -> th ) | 
						
							| 9 | 7 3 | ax-mp |  |-  ( ph -> ch ) | 
						
							| 10 | 1 9 | ax-mp |  |-  ch | 
						
							| 11 |  | bicom1 |  |-  ( ( ta <-> ( ch -> th ) ) -> ( ( ch -> th ) <-> ta ) ) | 
						
							| 12 | 5 11 | ax-mp |  |-  ( ( ch -> th ) <-> ta ) | 
						
							| 13 | 12 | biimpi |  |-  ( ( ch -> th ) -> ta ) | 
						
							| 14 | 8 13 | ax-mp |  |-  ta | 
						
							| 15 | 7 14 | pm3.2i |  |-  ( ps /\ ta ) | 
						
							| 16 |  | pm3.4 |  |-  ( ( ps /\ ta ) -> ( ps -> ta ) ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( ps -> ta ) | 
						
							| 18 | 10 17 | pm3.2i |  |-  ( ch /\ ( ps -> ta ) ) | 
						
							| 19 |  | pm3.4 |  |-  ( ( ch /\ ( ps -> ta ) ) -> ( ch -> ( ps -> ta ) ) ) | 
						
							| 20 | 18 19 | ax-mp |  |-  ( ch -> ( ps -> ta ) ) |