Metamath Proof Explorer


Theorem cortrclrtrcl

Description: The reflexive-transitive closure is idempotent. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion cortrclrtrcl t* t* = t*

Proof

Step Hyp Ref Expression
1 cotrclrcl t+ r* = t*
2 1 eqcomi t* = t+ r*
3 2 coeq1i t* t* = t+ r* t*
4 coass t+ r* t* = t+ r* t*
5 corclrtrcl r* t* = t*
6 5 coeq2i t+ r* t* = t+ t*
7 cotrclrtrcl t+ t* = t*
8 6 7 eqtri t+ r* t* = t*
9 4 8 eqtri t+ r* t* = t*
10 3 9 eqtri t* t* = t*