Metamath Proof Explorer


Theorem cosf

Description: Domain and codomain of the cosine function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion cosf cos:

Proof

Step Hyp Ref Expression
1 df-cos cos=xeix+eix2
2 ax-icn i
3 mulcl ixix
4 2 3 mpan xix
5 efcl ixeix
6 4 5 syl xeix
7 negicn i
8 mulcl ixix
9 7 8 mpan xix
10 efcl ixeix
11 9 10 syl xeix
12 6 11 addcld xeix+eix
13 12 halfcld xeix+eix2
14 1 13 fmpti cos: