Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Cosets by ` R `
cosscnv
Next ⟩
coss1cnvres
Metamath Proof Explorer
Ascii
Unicode
Theorem
cosscnv
Description:
Class of cosets by the converse of
R
(Contributed by
Peter Mazsa
, 17-Jun-2020)
Ref
Expression
Assertion
cosscnv
⊢
≀
R
-1
=
x
y
|
∃
u
x
R
u
∧
y
R
u
Proof
Step
Hyp
Ref
Expression
1
df-coss
⊢
≀
R
-1
=
x
y
|
∃
u
u
R
-1
x
∧
u
R
-1
y
2
brcnvg
⊢
u
∈
V
∧
x
∈
V
→
u
R
-1
x
↔
x
R
u
3
2
el2v
⊢
u
R
-1
x
↔
x
R
u
4
brcnvg
⊢
u
∈
V
∧
y
∈
V
→
u
R
-1
y
↔
y
R
u
5
4
el2v
⊢
u
R
-1
y
↔
y
R
u
6
3
5
anbi12i
⊢
u
R
-1
x
∧
u
R
-1
y
↔
x
R
u
∧
y
R
u
7
6
exbii
⊢
∃
u
u
R
-1
x
∧
u
R
-1
y
↔
∃
u
x
R
u
∧
y
R
u
8
7
opabbii
⊢
x
y
|
∃
u
u
R
-1
x
∧
u
R
-1
y
=
x
y
|
∃
u
x
R
u
∧
y
R
u
9
1
8
eqtri
⊢
≀
R
-1
=
x
y
|
∃
u
x
R
u
∧
y
R
u