Metamath Proof Explorer


Theorem cotr2

Description: Two ways of saying a relation is transitive. Special instance of cotr2g . (Contributed by RP, 22-Mar-2020)

Ref Expression
Hypotheses cotr2.a domRA
cotr2.b domRranRB
cotr2.c ranRC
Assertion cotr2 RRRxAyBzCxRyyRzxRz

Proof

Step Hyp Ref Expression
1 cotr2.a domRA
2 cotr2.b domRranRB
3 cotr2.c ranRC
4 incom domRranR=ranRdomR
5 4 2 eqsstrri ranRdomRB
6 1 5 3 cotr2g RRRxAyBzCxRyyRzxRz