Metamath Proof Explorer


Theorem cotr2g

Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr2 for the main application. (Contributed by RP, 22-Mar-2020)

Ref Expression
Hypotheses cotr2g.d domBD
cotr2g.e ranBdomAE
cotr2g.f ranAF
Assertion cotr2g ABCxDyEzFxByyAzxCz

Proof

Step Hyp Ref Expression
1 cotr2g.d domBD
2 cotr2g.e ranBdomAE
3 cotr2g.f ranAF
4 cotrg ABCxyzxByyAzxCz
5 nfv yxD
6 nfv zxD
7 5 6 19.21-2 yzxDyEzFxByyAzxCzxDyzyEzFxByyAzxCz
8 7 albii xyzxDyEzFxByyAzxCzxxDyzyEzFxByyAzxCz
9 simpl xByyAzxBy
10 id xByyAzxByyAz
11 simpr xByyAzyAz
12 9 10 11 3jca xByyAzxByxByyAzyAz
13 simp2 xByxByyAzyAzxByyAz
14 12 13 impbii xByyAzxByxByyAzyAz
15 vex xV
16 vex yV
17 15 16 breldm xByxdomB
18 1 17 sselid xByxD
19 18 pm4.71ri xByxDxBy
20 15 16 brelrn xByyranB
21 vex zV
22 16 21 breldm yAzydomA
23 elin yranBdomAyranBydomA
24 23 biimpri yranBydomAyranBdomA
25 20 22 24 syl2an xByyAzyranBdomA
26 2 25 sselid xByyAzyE
27 26 pm4.71ri xByyAzyExByyAz
28 16 21 brelrn yAzzranA
29 3 28 sselid yAzzF
30 29 pm4.71ri yAzzFyAz
31 19 27 30 3anbi123i xByxByyAzyAzxDxByyExByyAzzFyAz
32 3an6 xDxByyExByyAzzFyAzxDyEzFxByxByyAzyAz
33 13 12 impbii xByxByyAzyAzxByyAz
34 33 anbi2i xDyEzFxByxByyAzyAzxDyEzFxByyAz
35 32 34 bitri xDxByyExByyAzzFyAzxDyEzFxByyAz
36 14 31 35 3bitri xByyAzxDyEzFxByyAz
37 36 imbi1i xByyAzxCzxDyEzFxByyAzxCz
38 impexp xDyEzFxByyAzxCzxDyEzFxByyAzxCz
39 3impexp xDyEzFxByyAzxCzxDyEzFxByyAzxCz
40 37 38 39 3bitri xByyAzxCzxDyEzFxByyAzxCz
41 40 albii zxByyAzxCzzxDyEzFxByyAzxCz
42 41 2albii xyzxByyAzxCzxyzxDyEzFxByyAzxCz
43 df-ral xDyzyEzFxByyAzxCzxxDyzyEzFxByyAzxCz
44 8 42 43 3bitr4i xyzxByyAzxCzxDyzyEzFxByyAzxCz
45 df-ral yEzzFxByyAzxCzyyEzzFxByyAzxCz
46 19.21v zyEzFxByyAzxCzyEzzFxByyAzxCz
47 46 bicomi yEzzFxByyAzxCzzyEzFxByyAzxCz
48 47 albii yyEzzFxByyAzxCzyzyEzFxByyAzxCz
49 45 48 bitri yEzzFxByyAzxCzyzyEzFxByyAzxCz
50 49 bicomi yzyEzFxByyAzxCzyEzzFxByyAzxCz
51 50 ralbii xDyzyEzFxByyAzxCzxDyEzzFxByyAzxCz
52 44 51 bitri xyzxByyAzxCzxDyEzzFxByyAzxCz
53 df-ral zFxByyAzxCzzzFxByyAzxCz
54 53 bicomi zzFxByyAzxCzzFxByyAzxCz
55 54 ralbii yEzzFxByyAzxCzyEzFxByyAzxCz
56 55 ralbii xDyEzzFxByyAzxCzxDyEzFxByyAzxCz
57 4 52 56 3bitri ABCxDyEzFxByyAzxCz