| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cotr2g.d |
⊢ dom 𝐵 ⊆ 𝐷 |
| 2 |
|
cotr2g.e |
⊢ ( ran 𝐵 ∩ dom 𝐴 ) ⊆ 𝐸 |
| 3 |
|
cotr2g.f |
⊢ ran 𝐴 ⊆ 𝐹 |
| 4 |
|
cotrg |
⊢ ( ( 𝐴 ∘ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐷 |
| 6 |
|
nfv |
⊢ Ⅎ 𝑧 𝑥 ∈ 𝐷 |
| 7 |
5 6
|
19.21-2 |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐷 → ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ↔ ( 𝑥 ∈ 𝐷 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) |
| 8 |
7
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐷 → ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐷 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) |
| 9 |
|
simpl |
⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐵 𝑦 ) |
| 10 |
|
id |
⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑦 𝐴 𝑧 ) |
| 12 |
9 10 11
|
3jca |
⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) ) |
| 13 |
|
simp2 |
⊢ ( ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
| 14 |
12 13
|
impbii |
⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ↔ ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) ) |
| 15 |
|
vex |
⊢ 𝑥 ∈ V |
| 16 |
|
vex |
⊢ 𝑦 ∈ V |
| 17 |
15 16
|
breldm |
⊢ ( 𝑥 𝐵 𝑦 → 𝑥 ∈ dom 𝐵 ) |
| 18 |
1 17
|
sselid |
⊢ ( 𝑥 𝐵 𝑦 → 𝑥 ∈ 𝐷 ) |
| 19 |
18
|
pm4.71ri |
⊢ ( 𝑥 𝐵 𝑦 ↔ ( 𝑥 ∈ 𝐷 ∧ 𝑥 𝐵 𝑦 ) ) |
| 20 |
15 16
|
brelrn |
⊢ ( 𝑥 𝐵 𝑦 → 𝑦 ∈ ran 𝐵 ) |
| 21 |
|
vex |
⊢ 𝑧 ∈ V |
| 22 |
16 21
|
breldm |
⊢ ( 𝑦 𝐴 𝑧 → 𝑦 ∈ dom 𝐴 ) |
| 23 |
|
elin |
⊢ ( 𝑦 ∈ ( ran 𝐵 ∩ dom 𝐴 ) ↔ ( 𝑦 ∈ ran 𝐵 ∧ 𝑦 ∈ dom 𝐴 ) ) |
| 24 |
23
|
biimpri |
⊢ ( ( 𝑦 ∈ ran 𝐵 ∧ 𝑦 ∈ dom 𝐴 ) → 𝑦 ∈ ( ran 𝐵 ∩ dom 𝐴 ) ) |
| 25 |
20 22 24
|
syl2an |
⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑦 ∈ ( ran 𝐵 ∩ dom 𝐴 ) ) |
| 26 |
2 25
|
sselid |
⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑦 ∈ 𝐸 ) |
| 27 |
26
|
pm4.71ri |
⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ↔ ( 𝑦 ∈ 𝐸 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 28 |
16 21
|
brelrn |
⊢ ( 𝑦 𝐴 𝑧 → 𝑧 ∈ ran 𝐴 ) |
| 29 |
3 28
|
sselid |
⊢ ( 𝑦 𝐴 𝑧 → 𝑧 ∈ 𝐹 ) |
| 30 |
29
|
pm4.71ri |
⊢ ( 𝑦 𝐴 𝑧 ↔ ( 𝑧 ∈ 𝐹 ∧ 𝑦 𝐴 𝑧 ) ) |
| 31 |
19 27 30
|
3anbi123i |
⊢ ( ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑥 𝐵 𝑦 ) ∧ ( 𝑦 ∈ 𝐸 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 32 |
|
3an6 |
⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑥 𝐵 𝑦 ) ∧ ( 𝑦 ∈ 𝐸 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑦 𝐴 𝑧 ) ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 33 |
13 12
|
impbii |
⊢ ( ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) ↔ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
| 34 |
33
|
anbi2i |
⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 35 |
32 34
|
bitri |
⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑥 𝐵 𝑦 ) ∧ ( 𝑦 ∈ 𝐸 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑦 𝐴 𝑧 ) ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 36 |
14 31 35
|
3bitri |
⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 37 |
36
|
imbi1i |
⊢ ( ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) → 𝑥 𝐶 𝑧 ) ) |
| 38 |
|
impexp |
⊢ ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) → 𝑥 𝐶 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) |
| 39 |
|
3impexp |
⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ↔ ( 𝑥 ∈ 𝐷 → ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) |
| 40 |
37 38 39
|
3bitri |
⊢ ( ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ( 𝑥 ∈ 𝐷 → ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) |
| 41 |
40
|
albii |
⊢ ( ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑧 ( 𝑥 ∈ 𝐷 → ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) |
| 42 |
41
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐷 → ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) |
| 43 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐷 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) |
| 44 |
8 42 43
|
3bitr4i |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) |
| 45 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐸 → ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) |
| 46 |
|
19.21v |
⊢ ( ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ↔ ( 𝑦 ∈ 𝐸 → ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) |
| 47 |
46
|
bicomi |
⊢ ( ( 𝑦 ∈ 𝐸 → ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ↔ ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) |
| 48 |
47
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐸 → ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) |
| 49 |
45 48
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) |
| 50 |
49
|
bicomi |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ↔ ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) |
| 51 |
50
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) |
| 52 |
44 51
|
bitri |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) |
| 53 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ 𝐹 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) |
| 54 |
53
|
bicomi |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐹 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 55 |
54
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ∈ 𝐹 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 56 |
55
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ∈ 𝐹 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 57 |
4 52 56
|
3bitri |
⊢ ( ( 𝐴 ∘ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ∈ 𝐹 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |