Metamath Proof Explorer


Theorem cotrintab

Description: The intersection of a class is a transitive relation if membership in the class implies the member is a transitive relation. (Contributed by RP, 28-Oct-2020)

Ref Expression
Hypothesis cotrintab.min φxxx
Assertion cotrintab x|φx|φx|φ

Proof

Step Hyp Ref Expression
1 cotrintab.min φxxx
2 cotr x|φx|φx|φuwvux|φwwx|φvux|φv
3 pm3.43 φuxwφwxvφuxwwxv
4 cotr xxxuwvuxwwxvuxv
5 4 biimpi xxxuwvuxwwxvuxv
6 2sp wvuxwwxvuxvuxwwxvuxv
7 6 sps uwvuxwwxvuxvuxwwxvuxv
8 1 5 7 3syl φuxwwxvuxv
9 3 8 sylcom φuxwφwxvφuxv
10 9 alanimi xφuxwxφwxvxφuxv
11 opex uwV
12 11 elintab uwx|φxφuwx
13 df-br ux|φwuwx|φ
14 df-br uxwuwx
15 14 imbi2i φuxwφuwx
16 15 albii xφuxwxφuwx
17 12 13 16 3bitr4i ux|φwxφuxw
18 opex wvV
19 18 elintab wvx|φxφwvx
20 df-br wx|φvwvx|φ
21 df-br wxvwvx
22 21 imbi2i φwxvφwvx
23 22 albii xφwxvxφwvx
24 19 20 23 3bitr4i wx|φvxφwxv
25 17 24 anbi12i ux|φwwx|φvxφuxwxφwxv
26 opex uvV
27 26 elintab uvx|φxφuvx
28 df-br ux|φvuvx|φ
29 df-br uxvuvx
30 29 imbi2i φuxvφuvx
31 30 albii xφuxvxφuvx
32 27 28 31 3bitr4i ux|φvxφuxv
33 10 25 32 3imtr4i ux|φwwx|φvux|φv
34 33 gen2 wvux|φwwx|φvux|φv
35 2 34 mpgbir x|φx|φx|φ