Description: The intersection of a class is a transitive relation if membership in the class implies the member is a transitive relation. (Contributed by RP, 28-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cotrintab.min | |
|
Assertion | cotrintab | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cotrintab.min | |
|
2 | cotr | |
|
3 | pm3.43 | |
|
4 | cotr | |
|
5 | 4 | biimpi | |
6 | 2sp | |
|
7 | 6 | sps | |
8 | 1 5 7 | 3syl | |
9 | 3 8 | sylcom | |
10 | 9 | alanimi | |
11 | opex | |
|
12 | 11 | elintab | |
13 | df-br | |
|
14 | df-br | |
|
15 | 14 | imbi2i | |
16 | 15 | albii | |
17 | 12 13 16 | 3bitr4i | |
18 | opex | |
|
19 | 18 | elintab | |
20 | df-br | |
|
21 | df-br | |
|
22 | 21 | imbi2i | |
23 | 22 | albii | |
24 | 19 20 23 | 3bitr4i | |
25 | 17 24 | anbi12i | |
26 | opex | |
|
27 | 26 | elintab | |
28 | df-br | |
|
29 | df-br | |
|
30 | 29 | imbi2i | |
31 | 30 | albii | |
32 | 27 28 31 | 3bitr4i | |
33 | 10 25 32 | 3imtr4i | |
34 | 33 | gen2 | |
35 | 2 34 | mpgbir | |