Metamath Proof Explorer


Theorem cphnm

Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses nmsq.v V=BaseW
nmsq.h ,˙=𝑖W
nmsq.n N=normW
Assertion cphnm WCPreHilAVNA=A,˙A

Proof

Step Hyp Ref Expression
1 nmsq.v V=BaseW
2 nmsq.h ,˙=𝑖W
3 nmsq.n N=normW
4 1 2 3 cphnmfval WCPreHilN=xVx,˙x
5 4 fveq1d WCPreHilNA=xVx,˙xA
6 oveq12 x=Ax=Ax,˙x=A,˙A
7 6 anidms x=Ax,˙x=A,˙A
8 7 fveq2d x=Ax,˙x=A,˙A
9 eqid xVx,˙x=xVx,˙x
10 fvex A,˙AV
11 8 9 10 fvmpt AVxVx,˙xA=A,˙A
12 5 11 sylan9eq WCPreHilAVNA=A,˙A