Metamath Proof Explorer


Theorem cplgr1vlem

Description: Lemma for cplgr1v and cusgr1v . (Contributed by AV, 23-Mar-2021)

Ref Expression
Hypothesis cplgr0v.v V=VtxG
Assertion cplgr1vlem V=1GV

Proof

Step Hyp Ref Expression
1 cplgr0v.v V=VtxG
2 1 fvexi VV
3 hash1snb VVV=1nV=n
4 2 3 ax-mp V=1nV=n
5 vsnid nn
6 eleq2 V=nnVnn
7 5 6 mpbiri V=nnV
8 1 1vgrex nVGV
9 7 8 syl V=nGV
10 9 exlimiv nV=nGV
11 4 10 sylbi V=1GV