Metamath Proof Explorer


Theorem cusgr1v

Description: A graph with one vertex and no edges is a complete simple graph. (Contributed by AV, 1-Nov-2020) (Revised by AV, 23-Mar-2021)

Ref Expression
Hypothesis cplgr0v.v V=VtxG
Assertion cusgr1v V=1iEdgG=GComplUSGraph

Proof

Step Hyp Ref Expression
1 cplgr0v.v V=VtxG
2 1 cplgr1vlem V=1GV
3 2 adantr V=1iEdgG=GV
4 simpr V=1iEdgG=iEdgG=
5 3 4 usgr0e V=1iEdgG=GUSGraph
6 1 cplgr1v V=1GComplGraph
7 6 adantr V=1iEdgG=GComplGraph
8 iscusgr GComplUSGraphGUSGraphGComplGraph
9 5 7 8 sylanbrc V=1iEdgG=GComplUSGraph