Metamath Proof Explorer


Theorem cplgr2v

Description: An undirected hypergraph with two (different) vertices is complete iff there is an edge between these two vertices. (Contributed by AV, 3-Nov-2020)

Ref Expression
Hypotheses cplgr0v.v V=VtxG
cplgr2v.e E=EdgG
Assertion cplgr2v GUHGraphV=2GComplGraphVE

Proof

Step Hyp Ref Expression
1 cplgr0v.v V=VtxG
2 cplgr2v.e E=EdgG
3 1 iscplgr GUHGraphGComplGraphvVvUnivVtxG
4 3 adantr GUHGraphV=2GComplGraphvVvUnivVtxG
5 1 2 uvtx2vtx1edgb GUHGraphV=2VEvVvUnivVtxG
6 4 5 bitr4d GUHGraphV=2GComplGraphVE