Metamath Proof Explorer


Theorem cplgr2v

Description: An undirected hypergraph with two (different) vertices is complete iff there is an edge between these two vertices. (Contributed by AV, 3-Nov-2020)

Ref Expression
Hypotheses cplgr0v.v
|- V = ( Vtx ` G )
cplgr2v.e
|- E = ( Edg ` G )
Assertion cplgr2v
|- ( ( G e. UHGraph /\ ( # ` V ) = 2 ) -> ( G e. ComplGraph <-> V e. E ) )

Proof

Step Hyp Ref Expression
1 cplgr0v.v
 |-  V = ( Vtx ` G )
2 cplgr2v.e
 |-  E = ( Edg ` G )
3 1 iscplgr
 |-  ( G e. UHGraph -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) )
4 3 adantr
 |-  ( ( G e. UHGraph /\ ( # ` V ) = 2 ) -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) )
5 1 2 uvtx2vtx1edgb
 |-  ( ( G e. UHGraph /\ ( # ` V ) = 2 ) -> ( V e. E <-> A. v e. V v e. ( UnivVtx ` G ) ) )
6 4 5 bitr4d
 |-  ( ( G e. UHGraph /\ ( # ` V ) = 2 ) -> ( G e. ComplGraph <-> V e. E ) )