Description: An undirected hypergraph with two (different) vertices is complete iff there is an edge between these two vertices. (Contributed by AV, 3-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cplgr0v.v | |- V = ( Vtx ` G ) |
|
cplgr2v.e | |- E = ( Edg ` G ) |
||
Assertion | cplgr2v | |- ( ( G e. UHGraph /\ ( # ` V ) = 2 ) -> ( G e. ComplGraph <-> V e. E ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgr0v.v | |- V = ( Vtx ` G ) |
|
2 | cplgr2v.e | |- E = ( Edg ` G ) |
|
3 | 1 | iscplgr | |- ( G e. UHGraph -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) ) |
4 | 3 | adantr | |- ( ( G e. UHGraph /\ ( # ` V ) = 2 ) -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) ) |
5 | 1 2 | uvtx2vtx1edgb | |- ( ( G e. UHGraph /\ ( # ` V ) = 2 ) -> ( V e. E <-> A. v e. V v e. ( UnivVtx ` G ) ) ) |
6 | 4 5 | bitr4d | |- ( ( G e. UHGraph /\ ( # ` V ) = 2 ) -> ( G e. ComplGraph <-> V e. E ) ) |