Step |
Hyp |
Ref |
Expression |
1 |
|
cplgr0v.v |
|- V = ( Vtx ` G ) |
2 |
|
cplgr2v.e |
|- E = ( Edg ` G ) |
3 |
|
simpl |
|- ( ( G e. UHGraph /\ V = { A , B } ) -> G e. UHGraph ) |
4 |
|
fveq2 |
|- ( V = { A , B } -> ( # ` V ) = ( # ` { A , B } ) ) |
5 |
4
|
adantl |
|- ( ( G e. UHGraph /\ V = { A , B } ) -> ( # ` V ) = ( # ` { A , B } ) ) |
6 |
|
elex |
|- ( A e. X -> A e. _V ) |
7 |
|
elex |
|- ( B e. Y -> B e. _V ) |
8 |
|
id |
|- ( A =/= B -> A =/= B ) |
9 |
|
hashprb |
|- ( ( A e. _V /\ B e. _V /\ A =/= B ) <-> ( # ` { A , B } ) = 2 ) |
10 |
9
|
biimpi |
|- ( ( A e. _V /\ B e. _V /\ A =/= B ) -> ( # ` { A , B } ) = 2 ) |
11 |
6 7 8 10
|
syl3an |
|- ( ( A e. X /\ B e. Y /\ A =/= B ) -> ( # ` { A , B } ) = 2 ) |
12 |
5 11
|
sylan9eqr |
|- ( ( ( A e. X /\ B e. Y /\ A =/= B ) /\ ( G e. UHGraph /\ V = { A , B } ) ) -> ( # ` V ) = 2 ) |
13 |
1 2
|
cplgr2v |
|- ( ( G e. UHGraph /\ ( # ` V ) = 2 ) -> ( G e. ComplGraph <-> V e. E ) ) |
14 |
3 12 13
|
syl2an2 |
|- ( ( ( A e. X /\ B e. Y /\ A =/= B ) /\ ( G e. UHGraph /\ V = { A , B } ) ) -> ( G e. ComplGraph <-> V e. E ) ) |
15 |
|
simprr |
|- ( ( ( A e. X /\ B e. Y /\ A =/= B ) /\ ( G e. UHGraph /\ V = { A , B } ) ) -> V = { A , B } ) |
16 |
15
|
eleq1d |
|- ( ( ( A e. X /\ B e. Y /\ A =/= B ) /\ ( G e. UHGraph /\ V = { A , B } ) ) -> ( V e. E <-> { A , B } e. E ) ) |
17 |
14 16
|
bitrd |
|- ( ( ( A e. X /\ B e. Y /\ A =/= B ) /\ ( G e. UHGraph /\ V = { A , B } ) ) -> ( G e. ComplGraph <-> { A , B } e. E ) ) |