| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cplgr0v.v |
|- V = ( Vtx ` G ) |
| 2 |
|
cplgr2v.e |
|- E = ( Edg ` G ) |
| 3 |
|
simpl |
|- ( ( G e. UHGraph /\ V = { A , B } ) -> G e. UHGraph ) |
| 4 |
|
fveq2 |
|- ( V = { A , B } -> ( # ` V ) = ( # ` { A , B } ) ) |
| 5 |
4
|
adantl |
|- ( ( G e. UHGraph /\ V = { A , B } ) -> ( # ` V ) = ( # ` { A , B } ) ) |
| 6 |
|
elex |
|- ( A e. X -> A e. _V ) |
| 7 |
|
elex |
|- ( B e. Y -> B e. _V ) |
| 8 |
|
id |
|- ( A =/= B -> A =/= B ) |
| 9 |
|
hashprb |
|- ( ( A e. _V /\ B e. _V /\ A =/= B ) <-> ( # ` { A , B } ) = 2 ) |
| 10 |
9
|
biimpi |
|- ( ( A e. _V /\ B e. _V /\ A =/= B ) -> ( # ` { A , B } ) = 2 ) |
| 11 |
6 7 8 10
|
syl3an |
|- ( ( A e. X /\ B e. Y /\ A =/= B ) -> ( # ` { A , B } ) = 2 ) |
| 12 |
5 11
|
sylan9eqr |
|- ( ( ( A e. X /\ B e. Y /\ A =/= B ) /\ ( G e. UHGraph /\ V = { A , B } ) ) -> ( # ` V ) = 2 ) |
| 13 |
1 2
|
cplgr2v |
|- ( ( G e. UHGraph /\ ( # ` V ) = 2 ) -> ( G e. ComplGraph <-> V e. E ) ) |
| 14 |
3 12 13
|
syl2an2 |
|- ( ( ( A e. X /\ B e. Y /\ A =/= B ) /\ ( G e. UHGraph /\ V = { A , B } ) ) -> ( G e. ComplGraph <-> V e. E ) ) |
| 15 |
|
simprr |
|- ( ( ( A e. X /\ B e. Y /\ A =/= B ) /\ ( G e. UHGraph /\ V = { A , B } ) ) -> V = { A , B } ) |
| 16 |
15
|
eleq1d |
|- ( ( ( A e. X /\ B e. Y /\ A =/= B ) /\ ( G e. UHGraph /\ V = { A , B } ) ) -> ( V e. E <-> { A , B } e. E ) ) |
| 17 |
14 16
|
bitrd |
|- ( ( ( A e. X /\ B e. Y /\ A =/= B ) /\ ( G e. UHGraph /\ V = { A , B } ) ) -> ( G e. ComplGraph <-> { A , B } e. E ) ) |