| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nbcplgr.v |
|- V = ( Vtx ` G ) |
| 2 |
1
|
cplgruvtxb |
|- ( G e. ComplGraph -> ( G e. ComplGraph <-> ( UnivVtx ` G ) = V ) ) |
| 3 |
2
|
ibi |
|- ( G e. ComplGraph -> ( UnivVtx ` G ) = V ) |
| 4 |
3
|
eqcomd |
|- ( G e. ComplGraph -> V = ( UnivVtx ` G ) ) |
| 5 |
4
|
eleq2d |
|- ( G e. ComplGraph -> ( N e. V <-> N e. ( UnivVtx ` G ) ) ) |
| 6 |
5
|
biimpa |
|- ( ( G e. ComplGraph /\ N e. V ) -> N e. ( UnivVtx ` G ) ) |
| 7 |
1
|
uvtxnbgrb |
|- ( N e. V -> ( N e. ( UnivVtx ` G ) <-> ( G NeighbVtx N ) = ( V \ { N } ) ) ) |
| 8 |
7
|
adantl |
|- ( ( G e. ComplGraph /\ N e. V ) -> ( N e. ( UnivVtx ` G ) <-> ( G NeighbVtx N ) = ( V \ { N } ) ) ) |
| 9 |
6 8
|
mpbid |
|- ( ( G e. ComplGraph /\ N e. V ) -> ( G NeighbVtx N ) = ( V \ { N } ) ) |