Metamath Proof Explorer


Theorem nbcplgr

Description: In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 3-Nov-2020)

Ref Expression
Hypothesis nbcplgr.v V=VtxG
Assertion nbcplgr GComplGraphNVGNeighbVtxN=VN

Proof

Step Hyp Ref Expression
1 nbcplgr.v V=VtxG
2 1 cplgruvtxb GComplGraphGComplGraphUnivVtxG=V
3 2 ibi GComplGraphUnivVtxG=V
4 3 eqcomd GComplGraphV=UnivVtxG
5 4 eleq2d GComplGraphNVNUnivVtxG
6 5 biimpa GComplGraphNVNUnivVtxG
7 1 uvtxnbgrb NVNUnivVtxGGNeighbVtxN=VN
8 7 adantl GComplGraphNVNUnivVtxGGNeighbVtxN=VN
9 6 8 mpbid GComplGraphNVGNeighbVtxN=VN