| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cplgr3v.e |
|- E = ( Edg ` G ) |
| 2 |
|
cplgr3v.t |
|- ( Vtx ` G ) = { A , B , C } |
| 3 |
2
|
eqcomi |
|- { A , B , C } = ( Vtx ` G ) |
| 4 |
3
|
iscplgrnb |
|- ( G e. UPGraph -> ( G e. ComplGraph <-> A. v e. { A , B , C } A. n e. ( { A , B , C } \ { v } ) n e. ( G NeighbVtx v ) ) ) |
| 5 |
4
|
3ad2ant2 |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( G e. ComplGraph <-> A. v e. { A , B , C } A. n e. ( { A , B , C } \ { v } ) n e. ( G NeighbVtx v ) ) ) |
| 6 |
|
sneq |
|- ( v = A -> { v } = { A } ) |
| 7 |
6
|
difeq2d |
|- ( v = A -> ( { A , B , C } \ { v } ) = ( { A , B , C } \ { A } ) ) |
| 8 |
|
tprot |
|- { A , B , C } = { B , C , A } |
| 9 |
8
|
difeq1i |
|- ( { A , B , C } \ { A } ) = ( { B , C , A } \ { A } ) |
| 10 |
|
necom |
|- ( A =/= B <-> B =/= A ) |
| 11 |
|
necom |
|- ( A =/= C <-> C =/= A ) |
| 12 |
|
diftpsn3 |
|- ( ( B =/= A /\ C =/= A ) -> ( { B , C , A } \ { A } ) = { B , C } ) |
| 13 |
10 11 12
|
syl2anb |
|- ( ( A =/= B /\ A =/= C ) -> ( { B , C , A } \ { A } ) = { B , C } ) |
| 14 |
13
|
3adant3 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { B , C , A } \ { A } ) = { B , C } ) |
| 15 |
9 14
|
eqtrid |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B , C } \ { A } ) = { B , C } ) |
| 16 |
15
|
3ad2ant3 |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( { A , B , C } \ { A } ) = { B , C } ) |
| 17 |
7 16
|
sylan9eqr |
|- ( ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ v = A ) -> ( { A , B , C } \ { v } ) = { B , C } ) |
| 18 |
|
oveq2 |
|- ( v = A -> ( G NeighbVtx v ) = ( G NeighbVtx A ) ) |
| 19 |
18
|
eleq2d |
|- ( v = A -> ( n e. ( G NeighbVtx v ) <-> n e. ( G NeighbVtx A ) ) ) |
| 20 |
19
|
adantl |
|- ( ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ v = A ) -> ( n e. ( G NeighbVtx v ) <-> n e. ( G NeighbVtx A ) ) ) |
| 21 |
17 20
|
raleqbidv |
|- ( ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ v = A ) -> ( A. n e. ( { A , B , C } \ { v } ) n e. ( G NeighbVtx v ) <-> A. n e. { B , C } n e. ( G NeighbVtx A ) ) ) |
| 22 |
|
sneq |
|- ( v = B -> { v } = { B } ) |
| 23 |
22
|
difeq2d |
|- ( v = B -> ( { A , B , C } \ { v } ) = ( { A , B , C } \ { B } ) ) |
| 24 |
|
tprot |
|- { C , A , B } = { A , B , C } |
| 25 |
24
|
eqcomi |
|- { A , B , C } = { C , A , B } |
| 26 |
25
|
difeq1i |
|- ( { A , B , C } \ { B } ) = ( { C , A , B } \ { B } ) |
| 27 |
|
necom |
|- ( B =/= C <-> C =/= B ) |
| 28 |
27
|
biimpi |
|- ( B =/= C -> C =/= B ) |
| 29 |
28
|
anim2i |
|- ( ( A =/= B /\ B =/= C ) -> ( A =/= B /\ C =/= B ) ) |
| 30 |
29
|
ancomd |
|- ( ( A =/= B /\ B =/= C ) -> ( C =/= B /\ A =/= B ) ) |
| 31 |
|
diftpsn3 |
|- ( ( C =/= B /\ A =/= B ) -> ( { C , A , B } \ { B } ) = { C , A } ) |
| 32 |
30 31
|
syl |
|- ( ( A =/= B /\ B =/= C ) -> ( { C , A , B } \ { B } ) = { C , A } ) |
| 33 |
32
|
3adant2 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { C , A , B } \ { B } ) = { C , A } ) |
| 34 |
26 33
|
eqtrid |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B , C } \ { B } ) = { C , A } ) |
| 35 |
34
|
3ad2ant3 |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( { A , B , C } \ { B } ) = { C , A } ) |
| 36 |
23 35
|
sylan9eqr |
|- ( ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ v = B ) -> ( { A , B , C } \ { v } ) = { C , A } ) |
| 37 |
|
oveq2 |
|- ( v = B -> ( G NeighbVtx v ) = ( G NeighbVtx B ) ) |
| 38 |
37
|
eleq2d |
|- ( v = B -> ( n e. ( G NeighbVtx v ) <-> n e. ( G NeighbVtx B ) ) ) |
| 39 |
38
|
adantl |
|- ( ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ v = B ) -> ( n e. ( G NeighbVtx v ) <-> n e. ( G NeighbVtx B ) ) ) |
| 40 |
36 39
|
raleqbidv |
|- ( ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ v = B ) -> ( A. n e. ( { A , B , C } \ { v } ) n e. ( G NeighbVtx v ) <-> A. n e. { C , A } n e. ( G NeighbVtx B ) ) ) |
| 41 |
|
sneq |
|- ( v = C -> { v } = { C } ) |
| 42 |
41
|
difeq2d |
|- ( v = C -> ( { A , B , C } \ { v } ) = ( { A , B , C } \ { C } ) ) |
| 43 |
|
diftpsn3 |
|- ( ( A =/= C /\ B =/= C ) -> ( { A , B , C } \ { C } ) = { A , B } ) |
| 44 |
43
|
3adant1 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B , C } \ { C } ) = { A , B } ) |
| 45 |
44
|
3ad2ant3 |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( { A , B , C } \ { C } ) = { A , B } ) |
| 46 |
42 45
|
sylan9eqr |
|- ( ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ v = C ) -> ( { A , B , C } \ { v } ) = { A , B } ) |
| 47 |
|
oveq2 |
|- ( v = C -> ( G NeighbVtx v ) = ( G NeighbVtx C ) ) |
| 48 |
47
|
eleq2d |
|- ( v = C -> ( n e. ( G NeighbVtx v ) <-> n e. ( G NeighbVtx C ) ) ) |
| 49 |
48
|
adantl |
|- ( ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ v = C ) -> ( n e. ( G NeighbVtx v ) <-> n e. ( G NeighbVtx C ) ) ) |
| 50 |
46 49
|
raleqbidv |
|- ( ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ v = C ) -> ( A. n e. ( { A , B , C } \ { v } ) n e. ( G NeighbVtx v ) <-> A. n e. { A , B } n e. ( G NeighbVtx C ) ) ) |
| 51 |
|
simp1 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> A e. X ) |
| 52 |
51
|
3ad2ant1 |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> A e. X ) |
| 53 |
|
simp2 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> B e. Y ) |
| 54 |
53
|
3ad2ant1 |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> B e. Y ) |
| 55 |
|
simp3 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> C e. Z ) |
| 56 |
55
|
3ad2ant1 |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> C e. Z ) |
| 57 |
21 40 50 52 54 56
|
raltpd |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( A. v e. { A , B , C } A. n e. ( { A , B , C } \ { v } ) n e. ( G NeighbVtx v ) <-> ( A. n e. { B , C } n e. ( G NeighbVtx A ) /\ A. n e. { C , A } n e. ( G NeighbVtx B ) /\ A. n e. { A , B } n e. ( G NeighbVtx C ) ) ) ) |
| 58 |
|
eleq1 |
|- ( n = B -> ( n e. ( G NeighbVtx A ) <-> B e. ( G NeighbVtx A ) ) ) |
| 59 |
|
eleq1 |
|- ( n = C -> ( n e. ( G NeighbVtx A ) <-> C e. ( G NeighbVtx A ) ) ) |
| 60 |
58 59
|
ralprg |
|- ( ( B e. Y /\ C e. Z ) -> ( A. n e. { B , C } n e. ( G NeighbVtx A ) <-> ( B e. ( G NeighbVtx A ) /\ C e. ( G NeighbVtx A ) ) ) ) |
| 61 |
60
|
3adant1 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( A. n e. { B , C } n e. ( G NeighbVtx A ) <-> ( B e. ( G NeighbVtx A ) /\ C e. ( G NeighbVtx A ) ) ) ) |
| 62 |
|
eleq1 |
|- ( n = C -> ( n e. ( G NeighbVtx B ) <-> C e. ( G NeighbVtx B ) ) ) |
| 63 |
|
eleq1 |
|- ( n = A -> ( n e. ( G NeighbVtx B ) <-> A e. ( G NeighbVtx B ) ) ) |
| 64 |
62 63
|
ralprg |
|- ( ( C e. Z /\ A e. X ) -> ( A. n e. { C , A } n e. ( G NeighbVtx B ) <-> ( C e. ( G NeighbVtx B ) /\ A e. ( G NeighbVtx B ) ) ) ) |
| 65 |
64
|
ancoms |
|- ( ( A e. X /\ C e. Z ) -> ( A. n e. { C , A } n e. ( G NeighbVtx B ) <-> ( C e. ( G NeighbVtx B ) /\ A e. ( G NeighbVtx B ) ) ) ) |
| 66 |
65
|
3adant2 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( A. n e. { C , A } n e. ( G NeighbVtx B ) <-> ( C e. ( G NeighbVtx B ) /\ A e. ( G NeighbVtx B ) ) ) ) |
| 67 |
|
eleq1 |
|- ( n = A -> ( n e. ( G NeighbVtx C ) <-> A e. ( G NeighbVtx C ) ) ) |
| 68 |
|
eleq1 |
|- ( n = B -> ( n e. ( G NeighbVtx C ) <-> B e. ( G NeighbVtx C ) ) ) |
| 69 |
67 68
|
ralprg |
|- ( ( A e. X /\ B e. Y ) -> ( A. n e. { A , B } n e. ( G NeighbVtx C ) <-> ( A e. ( G NeighbVtx C ) /\ B e. ( G NeighbVtx C ) ) ) ) |
| 70 |
69
|
3adant3 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( A. n e. { A , B } n e. ( G NeighbVtx C ) <-> ( A e. ( G NeighbVtx C ) /\ B e. ( G NeighbVtx C ) ) ) ) |
| 71 |
61 66 70
|
3anbi123d |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( ( A. n e. { B , C } n e. ( G NeighbVtx A ) /\ A. n e. { C , A } n e. ( G NeighbVtx B ) /\ A. n e. { A , B } n e. ( G NeighbVtx C ) ) <-> ( ( B e. ( G NeighbVtx A ) /\ C e. ( G NeighbVtx A ) ) /\ ( C e. ( G NeighbVtx B ) /\ A e. ( G NeighbVtx B ) ) /\ ( A e. ( G NeighbVtx C ) /\ B e. ( G NeighbVtx C ) ) ) ) ) |
| 72 |
71
|
3ad2ant1 |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( A. n e. { B , C } n e. ( G NeighbVtx A ) /\ A. n e. { C , A } n e. ( G NeighbVtx B ) /\ A. n e. { A , B } n e. ( G NeighbVtx C ) ) <-> ( ( B e. ( G NeighbVtx A ) /\ C e. ( G NeighbVtx A ) ) /\ ( C e. ( G NeighbVtx B ) /\ A e. ( G NeighbVtx B ) ) /\ ( A e. ( G NeighbVtx C ) /\ B e. ( G NeighbVtx C ) ) ) ) ) |
| 73 |
|
3an6 |
|- ( ( ( B e. ( G NeighbVtx A ) /\ C e. ( G NeighbVtx A ) ) /\ ( C e. ( G NeighbVtx B ) /\ A e. ( G NeighbVtx B ) ) /\ ( A e. ( G NeighbVtx C ) /\ B e. ( G NeighbVtx C ) ) ) <-> ( ( B e. ( G NeighbVtx A ) /\ C e. ( G NeighbVtx B ) /\ A e. ( G NeighbVtx C ) ) /\ ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) ) |
| 74 |
73
|
a1i |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( ( B e. ( G NeighbVtx A ) /\ C e. ( G NeighbVtx A ) ) /\ ( C e. ( G NeighbVtx B ) /\ A e. ( G NeighbVtx B ) ) /\ ( A e. ( G NeighbVtx C ) /\ B e. ( G NeighbVtx C ) ) ) <-> ( ( B e. ( G NeighbVtx A ) /\ C e. ( G NeighbVtx B ) /\ A e. ( G NeighbVtx C ) ) /\ ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) ) ) |
| 75 |
|
nbgrsym |
|- ( B e. ( G NeighbVtx A ) <-> A e. ( G NeighbVtx B ) ) |
| 76 |
|
nbgrsym |
|- ( C e. ( G NeighbVtx B ) <-> B e. ( G NeighbVtx C ) ) |
| 77 |
|
nbgrsym |
|- ( A e. ( G NeighbVtx C ) <-> C e. ( G NeighbVtx A ) ) |
| 78 |
75 76 77
|
3anbi123i |
|- ( ( B e. ( G NeighbVtx A ) /\ C e. ( G NeighbVtx B ) /\ A e. ( G NeighbVtx C ) ) <-> ( A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) /\ C e. ( G NeighbVtx A ) ) ) |
| 79 |
78
|
a1i |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( B e. ( G NeighbVtx A ) /\ C e. ( G NeighbVtx B ) /\ A e. ( G NeighbVtx C ) ) <-> ( A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) /\ C e. ( G NeighbVtx A ) ) ) ) |
| 80 |
79
|
anbi1d |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( ( B e. ( G NeighbVtx A ) /\ C e. ( G NeighbVtx B ) /\ A e. ( G NeighbVtx C ) ) /\ ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) <-> ( ( A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) /\ C e. ( G NeighbVtx A ) ) /\ ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) ) ) |
| 81 |
|
3anrot |
|- ( ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) <-> ( A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) /\ C e. ( G NeighbVtx A ) ) ) |
| 82 |
81
|
bicomi |
|- ( ( A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) /\ C e. ( G NeighbVtx A ) ) <-> ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) |
| 83 |
82
|
anbi1i |
|- ( ( ( A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) /\ C e. ( G NeighbVtx A ) ) /\ ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) <-> ( ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) /\ ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) ) |
| 84 |
|
anidm |
|- ( ( ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) /\ ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) <-> ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) |
| 85 |
83 84
|
bitri |
|- ( ( ( A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) /\ C e. ( G NeighbVtx A ) ) /\ ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) <-> ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) |
| 86 |
85
|
a1i |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( ( A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) /\ C e. ( G NeighbVtx A ) ) /\ ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) <-> ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) ) |
| 87 |
|
tpid1g |
|- ( A e. X -> A e. { A , B , C } ) |
| 88 |
|
tpid2g |
|- ( B e. Y -> B e. { A , B , C } ) |
| 89 |
|
tpid3g |
|- ( C e. Z -> C e. { A , B , C } ) |
| 90 |
87 88 89
|
3anim123i |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( A e. { A , B , C } /\ B e. { A , B , C } /\ C e. { A , B , C } ) ) |
| 91 |
|
df-3an |
|- ( ( A e. { A , B , C } /\ B e. { A , B , C } /\ C e. { A , B , C } ) <-> ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) ) |
| 92 |
90 91
|
sylib |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) ) |
| 93 |
|
simplr |
|- ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) -> B e. { A , B , C } ) |
| 94 |
93
|
anim1ci |
|- ( ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) /\ G e. UPGraph ) -> ( G e. UPGraph /\ B e. { A , B , C } ) ) |
| 95 |
94
|
3adant3 |
|- ( ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( G e. UPGraph /\ B e. { A , B , C } ) ) |
| 96 |
|
simpll |
|- ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) -> A e. { A , B , C } ) |
| 97 |
|
simp1 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> A =/= B ) |
| 98 |
96 97
|
anim12i |
|- ( ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( A e. { A , B , C } /\ A =/= B ) ) |
| 99 |
3 1
|
nbupgrel |
|- ( ( ( G e. UPGraph /\ B e. { A , B , C } ) /\ ( A e. { A , B , C } /\ A =/= B ) ) -> ( A e. ( G NeighbVtx B ) <-> { A , B } e. E ) ) |
| 100 |
95 98 99
|
3imp3i2an |
|- ( ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( A e. ( G NeighbVtx B ) <-> { A , B } e. E ) ) |
| 101 |
|
simpr |
|- ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) -> C e. { A , B , C } ) |
| 102 |
101
|
anim1ci |
|- ( ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) /\ G e. UPGraph ) -> ( G e. UPGraph /\ C e. { A , B , C } ) ) |
| 103 |
102
|
3adant3 |
|- ( ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( G e. UPGraph /\ C e. { A , B , C } ) ) |
| 104 |
|
simp3 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> B =/= C ) |
| 105 |
93 104
|
anim12i |
|- ( ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( B e. { A , B , C } /\ B =/= C ) ) |
| 106 |
3 1
|
nbupgrel |
|- ( ( ( G e. UPGraph /\ C e. { A , B , C } ) /\ ( B e. { A , B , C } /\ B =/= C ) ) -> ( B e. ( G NeighbVtx C ) <-> { B , C } e. E ) ) |
| 107 |
103 105 106
|
3imp3i2an |
|- ( ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( B e. ( G NeighbVtx C ) <-> { B , C } e. E ) ) |
| 108 |
96
|
anim1ci |
|- ( ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) /\ G e. UPGraph ) -> ( G e. UPGraph /\ A e. { A , B , C } ) ) |
| 109 |
108
|
3adant3 |
|- ( ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( G e. UPGraph /\ A e. { A , B , C } ) ) |
| 110 |
|
simp2 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> A =/= C ) |
| 111 |
110
|
necomd |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> C =/= A ) |
| 112 |
101 111
|
anim12i |
|- ( ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( C e. { A , B , C } /\ C =/= A ) ) |
| 113 |
3 1
|
nbupgrel |
|- ( ( ( G e. UPGraph /\ A e. { A , B , C } ) /\ ( C e. { A , B , C } /\ C =/= A ) ) -> ( C e. ( G NeighbVtx A ) <-> { C , A } e. E ) ) |
| 114 |
109 112 113
|
3imp3i2an |
|- ( ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( C e. ( G NeighbVtx A ) <-> { C , A } e. E ) ) |
| 115 |
100 107 114
|
3anbi123d |
|- ( ( ( ( A e. { A , B , C } /\ B e. { A , B , C } ) /\ C e. { A , B , C } ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) /\ C e. ( G NeighbVtx A ) ) <-> ( { A , B } e. E /\ { B , C } e. E /\ { C , A } e. E ) ) ) |
| 116 |
92 115
|
syl3an1 |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) /\ C e. ( G NeighbVtx A ) ) <-> ( { A , B } e. E /\ { B , C } e. E /\ { C , A } e. E ) ) ) |
| 117 |
81 116
|
bitrid |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) <-> ( { A , B } e. E /\ { B , C } e. E /\ { C , A } e. E ) ) ) |
| 118 |
80 86 117
|
3bitrd |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( ( B e. ( G NeighbVtx A ) /\ C e. ( G NeighbVtx B ) /\ A e. ( G NeighbVtx C ) ) /\ ( C e. ( G NeighbVtx A ) /\ A e. ( G NeighbVtx B ) /\ B e. ( G NeighbVtx C ) ) ) <-> ( { A , B } e. E /\ { B , C } e. E /\ { C , A } e. E ) ) ) |
| 119 |
72 74 118
|
3bitrd |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( A. n e. { B , C } n e. ( G NeighbVtx A ) /\ A. n e. { C , A } n e. ( G NeighbVtx B ) /\ A. n e. { A , B } n e. ( G NeighbVtx C ) ) <-> ( { A , B } e. E /\ { B , C } e. E /\ { C , A } e. E ) ) ) |
| 120 |
5 57 119
|
3bitrd |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ G e. UPGraph /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( G e. ComplGraph <-> ( { A , B } e. E /\ { B , C } e. E /\ { C , A } e. E ) ) ) |