| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cplgr3v.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 2 |
|
cplgr3v.t |
⊢ ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } |
| 3 |
2
|
eqcomi |
⊢ { 𝐴 , 𝐵 , 𝐶 } = ( Vtx ‘ 𝐺 ) |
| 4 |
3
|
iscplgrnb |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∀ 𝑛 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 5 |
4
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∀ 𝑛 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 6 |
|
sneq |
⊢ ( 𝑣 = 𝐴 → { 𝑣 } = { 𝐴 } ) |
| 7 |
6
|
difeq2d |
⊢ ( 𝑣 = 𝐴 → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ) |
| 8 |
|
tprot |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } |
| 9 |
8
|
difeq1i |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) = ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) |
| 10 |
|
necom |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) |
| 11 |
|
necom |
⊢ ( 𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴 ) |
| 12 |
|
diftpsn3 |
⊢ ( ( 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ) → ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
| 13 |
10 11 12
|
syl2anb |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) → ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
| 14 |
13
|
3adant3 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
| 15 |
9 14
|
eqtrid |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
| 16 |
15
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
| 17 |
7 16
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐴 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = { 𝐵 , 𝐶 } ) |
| 18 |
|
oveq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝐴 ) ) |
| 19 |
18
|
eleq2d |
⊢ ( 𝑣 = 𝐴 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 20 |
19
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐴 ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 21 |
17 20
|
raleqbidv |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐴 ) → ( ∀ 𝑛 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 22 |
|
sneq |
⊢ ( 𝑣 = 𝐵 → { 𝑣 } = { 𝐵 } ) |
| 23 |
22
|
difeq2d |
⊢ ( 𝑣 = 𝐵 → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ) |
| 24 |
|
tprot |
⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } |
| 25 |
24
|
eqcomi |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐶 , 𝐴 , 𝐵 } |
| 26 |
25
|
difeq1i |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) = ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) |
| 27 |
|
necom |
⊢ ( 𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵 ) |
| 28 |
27
|
biimpi |
⊢ ( 𝐵 ≠ 𝐶 → 𝐶 ≠ 𝐵 ) |
| 29 |
28
|
anim2i |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ) ) |
| 30 |
29
|
ancomd |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
| 31 |
|
diftpsn3 |
⊢ ( ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
| 33 |
32
|
3adant2 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
| 34 |
26 33
|
eqtrid |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
| 35 |
34
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
| 36 |
23 35
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐵 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = { 𝐶 , 𝐴 } ) |
| 37 |
|
oveq2 |
⊢ ( 𝑣 = 𝐵 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝐵 ) ) |
| 38 |
37
|
eleq2d |
⊢ ( 𝑣 = 𝐵 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) |
| 39 |
38
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐵 ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) |
| 40 |
36 39
|
raleqbidv |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐵 ) → ( ∀ 𝑛 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) |
| 41 |
|
sneq |
⊢ ( 𝑣 = 𝐶 → { 𝑣 } = { 𝐶 } ) |
| 42 |
41
|
difeq2d |
⊢ ( 𝑣 = 𝐶 → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ) |
| 43 |
|
diftpsn3 |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) = { 𝐴 , 𝐵 } ) |
| 44 |
43
|
3adant1 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) = { 𝐴 , 𝐵 } ) |
| 45 |
44
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) = { 𝐴 , 𝐵 } ) |
| 46 |
42 45
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = { 𝐴 , 𝐵 } ) |
| 47 |
|
oveq2 |
⊢ ( 𝑣 = 𝐶 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝐶 ) ) |
| 48 |
47
|
eleq2d |
⊢ ( 𝑣 = 𝐶 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
| 49 |
48
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐶 ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
| 50 |
46 49
|
raleqbidv |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐶 ) → ( ∀ 𝑛 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
| 51 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐴 ∈ 𝑋 ) |
| 52 |
51
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → 𝐴 ∈ 𝑋 ) |
| 53 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐵 ∈ 𝑌 ) |
| 54 |
53
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → 𝐵 ∈ 𝑌 ) |
| 55 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 ∈ 𝑍 ) |
| 56 |
55
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → 𝐶 ∈ 𝑍 ) |
| 57 |
21 40 50 52 54 56
|
raltpd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ∀ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∀ 𝑛 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ( ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) |
| 58 |
|
eleq1 |
⊢ ( 𝑛 = 𝐵 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 59 |
|
eleq1 |
⊢ ( 𝑛 = 𝐶 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 60 |
58 59
|
ralprg |
⊢ ( ( 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) ) |
| 61 |
60
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) ) |
| 62 |
|
eleq1 |
⊢ ( 𝑛 = 𝐶 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) |
| 63 |
|
eleq1 |
⊢ ( 𝑛 = 𝐴 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) |
| 64 |
62 63
|
ralprg |
⊢ ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) ) |
| 65 |
64
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) ) |
| 66 |
65
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) ) |
| 67 |
|
eleq1 |
⊢ ( 𝑛 = 𝐴 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
| 68 |
|
eleq1 |
⊢ ( 𝑛 = 𝐵 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
| 69 |
67 68
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) |
| 70 |
69
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) |
| 71 |
61 66 70
|
3anbi123d |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ∧ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) ) |
| 72 |
71
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ∧ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) ) |
| 73 |
|
3an6 |
⊢ ( ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ∧ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) |
| 74 |
73
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ∧ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) ) |
| 75 |
|
nbgrsym |
⊢ ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) |
| 76 |
|
nbgrsym |
⊢ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) |
| 77 |
|
nbgrsym |
⊢ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) |
| 78 |
75 76 77
|
3anbi123i |
⊢ ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 79 |
78
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) ) |
| 80 |
79
|
anbi1d |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) ) |
| 81 |
|
3anrot |
⊢ ( ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 82 |
81
|
bicomi |
⊢ ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
| 83 |
82
|
anbi1i |
⊢ ( ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) |
| 84 |
|
anidm |
⊢ ( ( ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
| 85 |
83 84
|
bitri |
⊢ ( ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
| 86 |
85
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) |
| 87 |
|
tpid1g |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 88 |
|
tpid2g |
⊢ ( 𝐵 ∈ 𝑌 → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 89 |
|
tpid3g |
⊢ ( 𝐶 ∈ 𝑍 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 90 |
87 88 89
|
3anim123i |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 91 |
|
df-3an |
⊢ ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ↔ ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 92 |
90 91
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 93 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 94 |
93
|
anim1ci |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ) → ( 𝐺 ∈ UPGraph ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 95 |
94
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐺 ∈ UPGraph ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 96 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 97 |
|
simp1 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝐴 ≠ 𝐵 ) |
| 98 |
96 97
|
anim12i |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐴 ≠ 𝐵 ) ) |
| 99 |
3 1
|
nbupgrel |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
| 100 |
95 98 99
|
3imp3i2an |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
| 101 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 102 |
101
|
anim1ci |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ) → ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 103 |
102
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 104 |
|
simp3 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
| 105 |
93 104
|
anim12i |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ≠ 𝐶 ) ) |
| 106 |
3 1
|
nbupgrel |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) |
| 107 |
103 105 106
|
3imp3i2an |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) |
| 108 |
96
|
anim1ci |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ) → ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 109 |
108
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 110 |
|
simp2 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝐴 ≠ 𝐶 ) |
| 111 |
110
|
necomd |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ≠ 𝐴 ) |
| 112 |
101 111
|
anim12i |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ≠ 𝐴 ) ) |
| 113 |
3 1
|
nbupgrel |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ≠ 𝐴 ) ) → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) |
| 114 |
109 112 113
|
3imp3i2an |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) |
| 115 |
100 107 114
|
3anbi123d |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) ) |
| 116 |
92 115
|
syl3an1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) ) |
| 117 |
81 116
|
bitrid |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) ) |
| 118 |
80 86 117
|
3bitrd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) ) |
| 119 |
72 74 118
|
3bitrd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) ) |
| 120 |
5 57 119
|
3bitrd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐺 ∈ ComplGraph ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) ) |