| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cplgr0v.v |
|- V = ( Vtx ` G ) |
| 2 |
1
|
cplgr1vlem |
|- ( ( # ` V ) = 1 -> G e. _V ) |
| 3 |
2
|
adantr |
|- ( ( ( # ` V ) = 1 /\ ( iEdg ` G ) = (/) ) -> G e. _V ) |
| 4 |
|
simpr |
|- ( ( ( # ` V ) = 1 /\ ( iEdg ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) |
| 5 |
3 4
|
usgr0e |
|- ( ( ( # ` V ) = 1 /\ ( iEdg ` G ) = (/) ) -> G e. USGraph ) |
| 6 |
1
|
cplgr1v |
|- ( ( # ` V ) = 1 -> G e. ComplGraph ) |
| 7 |
6
|
adantr |
|- ( ( ( # ` V ) = 1 /\ ( iEdg ` G ) = (/) ) -> G e. ComplGraph ) |
| 8 |
|
iscusgr |
|- ( G e. ComplUSGraph <-> ( G e. USGraph /\ G e. ComplGraph ) ) |
| 9 |
5 7 8
|
sylanbrc |
|- ( ( ( # ` V ) = 1 /\ ( iEdg ` G ) = (/) ) -> G e. ComplUSGraph ) |