| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cplgr0v.v |
|- V = ( Vtx ` G ) |
| 2 |
|
simpr |
|- ( ( ( # ` V ) = 1 /\ v e. V ) -> v e. V ) |
| 3 |
|
ral0 |
|- A. n e. (/) n e. ( G NeighbVtx v ) |
| 4 |
1
|
fvexi |
|- V e. _V |
| 5 |
|
hash1snb |
|- ( V e. _V -> ( ( # ` V ) = 1 <-> E. n V = { n } ) ) |
| 6 |
4 5
|
ax-mp |
|- ( ( # ` V ) = 1 <-> E. n V = { n } ) |
| 7 |
|
velsn |
|- ( v e. { n } <-> v = n ) |
| 8 |
|
sneq |
|- ( v = n -> { v } = { n } ) |
| 9 |
8
|
difeq2d |
|- ( v = n -> ( { n } \ { v } ) = ( { n } \ { n } ) ) |
| 10 |
|
difid |
|- ( { n } \ { n } ) = (/) |
| 11 |
9 10
|
eqtrdi |
|- ( v = n -> ( { n } \ { v } ) = (/) ) |
| 12 |
7 11
|
sylbi |
|- ( v e. { n } -> ( { n } \ { v } ) = (/) ) |
| 13 |
12
|
a1i |
|- ( V = { n } -> ( v e. { n } -> ( { n } \ { v } ) = (/) ) ) |
| 14 |
|
eleq2 |
|- ( V = { n } -> ( v e. V <-> v e. { n } ) ) |
| 15 |
|
difeq1 |
|- ( V = { n } -> ( V \ { v } ) = ( { n } \ { v } ) ) |
| 16 |
15
|
eqeq1d |
|- ( V = { n } -> ( ( V \ { v } ) = (/) <-> ( { n } \ { v } ) = (/) ) ) |
| 17 |
13 14 16
|
3imtr4d |
|- ( V = { n } -> ( v e. V -> ( V \ { v } ) = (/) ) ) |
| 18 |
17
|
exlimiv |
|- ( E. n V = { n } -> ( v e. V -> ( V \ { v } ) = (/) ) ) |
| 19 |
6 18
|
sylbi |
|- ( ( # ` V ) = 1 -> ( v e. V -> ( V \ { v } ) = (/) ) ) |
| 20 |
19
|
imp |
|- ( ( ( # ` V ) = 1 /\ v e. V ) -> ( V \ { v } ) = (/) ) |
| 21 |
20
|
raleqdv |
|- ( ( ( # ` V ) = 1 /\ v e. V ) -> ( A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) <-> A. n e. (/) n e. ( G NeighbVtx v ) ) ) |
| 22 |
3 21
|
mpbiri |
|- ( ( ( # ` V ) = 1 /\ v e. V ) -> A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) ) |
| 23 |
1
|
uvtxel |
|- ( v e. ( UnivVtx ` G ) <-> ( v e. V /\ A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) ) ) |
| 24 |
2 22 23
|
sylanbrc |
|- ( ( ( # ` V ) = 1 /\ v e. V ) -> v e. ( UnivVtx ` G ) ) |
| 25 |
24
|
ralrimiva |
|- ( ( # ` V ) = 1 -> A. v e. V v e. ( UnivVtx ` G ) ) |
| 26 |
1
|
cplgr1vlem |
|- ( ( # ` V ) = 1 -> G e. _V ) |
| 27 |
1
|
iscplgr |
|- ( G e. _V -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) ) |
| 28 |
26 27
|
syl |
|- ( ( # ` V ) = 1 -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) ) |
| 29 |
25 28
|
mpbird |
|- ( ( # ` V ) = 1 -> G e. ComplGraph ) |