| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uvtxel.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | sneq |  |-  ( v = N -> { v } = { N } ) | 
						
							| 3 | 2 | difeq2d |  |-  ( v = N -> ( V \ { v } ) = ( V \ { N } ) ) | 
						
							| 4 |  | oveq2 |  |-  ( v = N -> ( G NeighbVtx v ) = ( G NeighbVtx N ) ) | 
						
							| 5 | 4 | eleq2d |  |-  ( v = N -> ( n e. ( G NeighbVtx v ) <-> n e. ( G NeighbVtx N ) ) ) | 
						
							| 6 | 3 5 | raleqbidv |  |-  ( v = N -> ( A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) <-> A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) ) | 
						
							| 7 | 1 | uvtxval |  |-  ( UnivVtx ` G ) = { v e. V | A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) } | 
						
							| 8 | 6 7 | elrab2 |  |-  ( N e. ( UnivVtx ` G ) <-> ( N e. V /\ A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) ) |