| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cplgr0v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
1
|
cplgr1vlem |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → 𝐺 ∈ V ) |
| 3 |
2
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ V ) |
| 4 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( iEdg ‘ 𝐺 ) = ∅ ) |
| 5 |
3 4
|
usgr0e |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ USGraph ) |
| 6 |
1
|
cplgr1v |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → 𝐺 ∈ ComplGraph ) |
| 7 |
6
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ ComplGraph ) |
| 8 |
|
iscusgr |
⊢ ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ) |
| 9 |
5 7 8
|
sylanbrc |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ ComplUSGraph ) |