Metamath Proof Explorer


Theorem cpmatpmat

Description: A constant polynomial matrix is a polynomial matrix. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses cpmat.s S=NConstPolyMatR
cpmat.p P=Poly1R
cpmat.c C=NMatP
cpmat.b B=BaseC
Assertion cpmatpmat NFinRVMSMB

Proof

Step Hyp Ref Expression
1 cpmat.s S=NConstPolyMatR
2 cpmat.p P=Poly1R
3 cpmat.c C=NMatP
4 cpmat.b B=BaseC
5 1 2 3 4 cpmat NFinRVS=mB|iNjNkcoe1imjk=0R
6 5 eleq2d NFinRVMSMmB|iNjNkcoe1imjk=0R
7 elrabi MmB|iNjNkcoe1imjk=0RMB
8 6 7 syl6bi NFinRVMSMB
9 8 3impia NFinRVMSMB