Metamath Proof Explorer


Theorem crctcshtrl

Description: Cyclically shifting the indices of a circuit <. F , P >. results in a trail <. H , Q >. . (Contributed by AV, 14-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses crctcsh.v V = Vtx G
crctcsh.i I = iEdg G
crctcsh.d φ F Circuits G P
crctcsh.n N = F
crctcsh.s φ S 0 ..^ N
crctcsh.h H = F cyclShift S
crctcsh.q Q = x 0 N if x N S P x + S P x + S - N
Assertion crctcshtrl φ H Trails G Q

Proof

Step Hyp Ref Expression
1 crctcsh.v V = Vtx G
2 crctcsh.i I = iEdg G
3 crctcsh.d φ F Circuits G P
4 crctcsh.n N = F
5 crctcsh.s φ S 0 ..^ N
6 crctcsh.h H = F cyclShift S
7 crctcsh.q Q = x 0 N if x N S P x + S P x + S - N
8 1 2 3 4 5 6 7 crctcshwlk φ H Walks G Q
9 crctistrl F Circuits G P F Trails G P
10 2 trlf1 F Trails G P F : 0 ..^ F 1-1 dom I
11 df-f1 F : 0 ..^ F 1-1 dom I F : 0 ..^ F dom I Fun F -1
12 iswrdi F : 0 ..^ F dom I F Word dom I
13 12 anim1i F : 0 ..^ F dom I Fun F -1 F Word dom I Fun F -1
14 11 13 sylbi F : 0 ..^ F 1-1 dom I F Word dom I Fun F -1
15 10 14 syl F Trails G P F Word dom I Fun F -1
16 3 9 15 3syl φ F Word dom I Fun F -1
17 elfzoelz S 0 ..^ N S
18 5 17 syl φ S
19 df-3an F Word dom I Fun F -1 S F Word dom I Fun F -1 S
20 16 18 19 sylanbrc φ F Word dom I Fun F -1 S
21 cshinj F Word dom I Fun F -1 S H = F cyclShift S Fun H -1
22 20 6 21 mpisyl φ Fun H -1
23 istrl H Trails G Q H Walks G Q Fun H -1
24 8 22 23 sylanbrc φ H Trails G Q