| Step | Hyp | Ref | Expression | 
						
							| 1 |  | crctcsh.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | crctcsh.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | crctcsh.d | ⊢ ( 𝜑  →  𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | 
						
							| 4 |  | crctcsh.n | ⊢ 𝑁  =  ( ♯ ‘ 𝐹 ) | 
						
							| 5 |  | crctcsh.s | ⊢ ( 𝜑  →  𝑆  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 6 |  | crctcsh.h | ⊢ 𝐻  =  ( 𝐹  cyclShift  𝑆 ) | 
						
							| 7 |  | crctcsh.q | ⊢ 𝑄  =  ( 𝑥  ∈  ( 0 ... 𝑁 )  ↦  if ( 𝑥  ≤  ( 𝑁  −  𝑆 ) ,  ( 𝑃 ‘ ( 𝑥  +  𝑆 ) ) ,  ( 𝑃 ‘ ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) ) ) | 
						
							| 8 | 1 2 3 4 5 6 7 | crctcshwlk | ⊢ ( 𝜑  →  𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) | 
						
							| 9 |  | crctistrl | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃  →  𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | 
						
							| 10 | 2 | trlf1 | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐼 ) | 
						
							| 11 |  | df-f1 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐼  ↔  ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐼  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 12 |  | iswrdi | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐼  →  𝐹  ∈  Word  dom  𝐼 ) | 
						
							| 13 | 12 | anim1i | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐼  ∧  Fun  ◡ 𝐹 )  →  ( 𝐹  ∈  Word  dom  𝐼  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 14 | 11 13 | sylbi | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐼  →  ( 𝐹  ∈  Word  dom  𝐼  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 15 | 3 9 10 14 | 4syl | ⊢ ( 𝜑  →  ( 𝐹  ∈  Word  dom  𝐼  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 16 |  | elfzoelz | ⊢ ( 𝑆  ∈  ( 0 ..^ 𝑁 )  →  𝑆  ∈  ℤ ) | 
						
							| 17 | 5 16 | syl | ⊢ ( 𝜑  →  𝑆  ∈  ℤ ) | 
						
							| 18 |  | df-3an | ⊢ ( ( 𝐹  ∈  Word  dom  𝐼  ∧  Fun  ◡ 𝐹  ∧  𝑆  ∈  ℤ )  ↔  ( ( 𝐹  ∈  Word  dom  𝐼  ∧  Fun  ◡ 𝐹 )  ∧  𝑆  ∈  ℤ ) ) | 
						
							| 19 | 15 17 18 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐹  ∈  Word  dom  𝐼  ∧  Fun  ◡ 𝐹  ∧  𝑆  ∈  ℤ ) ) | 
						
							| 20 |  | cshinj | ⊢ ( ( 𝐹  ∈  Word  dom  𝐼  ∧  Fun  ◡ 𝐹  ∧  𝑆  ∈  ℤ )  →  ( 𝐻  =  ( 𝐹  cyclShift  𝑆 )  →  Fun  ◡ 𝐻 ) ) | 
						
							| 21 | 19 6 20 | mpisyl | ⊢ ( 𝜑  →  Fun  ◡ 𝐻 ) | 
						
							| 22 |  | istrl | ⊢ ( 𝐻 ( Trails ‘ 𝐺 ) 𝑄  ↔  ( 𝐻 ( Walks ‘ 𝐺 ) 𝑄  ∧  Fun  ◡ 𝐻 ) ) | 
						
							| 23 | 8 21 22 | sylanbrc | ⊢ ( 𝜑  →  𝐻 ( Trails ‘ 𝐺 ) 𝑄 ) |