Metamath Proof Explorer


Theorem crctcshtrl

Description: Cyclically shifting the indices of a circuit <. F , P >. results in a trail <. H , Q >. . (Contributed by AV, 14-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses crctcsh.v V=VtxG
crctcsh.i I=iEdgG
crctcsh.d φFCircuitsGP
crctcsh.n N=F
crctcsh.s φS0..^N
crctcsh.h H=FcyclShiftS
crctcsh.q Q=x0NifxNSPx+SPx+S-N
Assertion crctcshtrl φHTrailsGQ

Proof

Step Hyp Ref Expression
1 crctcsh.v V=VtxG
2 crctcsh.i I=iEdgG
3 crctcsh.d φFCircuitsGP
4 crctcsh.n N=F
5 crctcsh.s φS0..^N
6 crctcsh.h H=FcyclShiftS
7 crctcsh.q Q=x0NifxNSPx+SPx+S-N
8 1 2 3 4 5 6 7 crctcshwlk φHWalksGQ
9 crctistrl FCircuitsGPFTrailsGP
10 2 trlf1 FTrailsGPF:0..^F1-1domI
11 df-f1 F:0..^F1-1domIF:0..^FdomIFunF-1
12 iswrdi F:0..^FdomIFWorddomI
13 12 anim1i F:0..^FdomIFunF-1FWorddomIFunF-1
14 11 13 sylbi F:0..^F1-1domIFWorddomIFunF-1
15 10 14 syl FTrailsGPFWorddomIFunF-1
16 3 9 15 3syl φFWorddomIFunF-1
17 elfzoelz S0..^NS
18 5 17 syl φS
19 df-3an FWorddomIFunF-1SFWorddomIFunF-1S
20 16 18 19 sylanbrc φFWorddomIFunF-1S
21 cshinj FWorddomIFunF-1SH=FcyclShiftSFunH-1
22 20 6 21 mpisyl φFunH-1
23 istrl HTrailsGQHWalksGQFunH-1
24 8 22 23 sylanbrc φHTrailsGQ