Metamath Proof Explorer


Theorem csbcnv

Description: Move class substitution in and out of the converse of a relation. Version of csbcnvgALT without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017) (Revised by NM, 23-Aug-2018)

Ref Expression
Assertion csbcnv A/xF-1=A/xF-1

Proof

Step Hyp Ref Expression
1 sbcbr [˙A/x]˙zFyzA/xFy
2 1 opabbii yz|[˙A/x]˙zFy=yz|zA/xFy
3 csbopab A/xyz|zFy=yz|[˙A/x]˙zFy
4 df-cnv A/xF-1=yz|zA/xFy
5 2 3 4 3eqtr4ri A/xF-1=A/xyz|zFy
6 df-cnv F-1=yz|zFy
7 6 csbeq2i A/xF-1=A/xyz|zFy
8 5 7 eqtr4i A/xF-1=A/xF-1