Metamath Proof Explorer


Theorem csbdm

Description: Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017) (Revised by NM, 24-Aug-2018)

Ref Expression
Assertion csbdm A/xdomB=domA/xB

Proof

Step Hyp Ref Expression
1 csbab A/xy|wywB=y|[˙A/x]˙wywB
2 sbcex2 [˙A/x]˙wywBw[˙A/x]˙ywB
3 sbcel2 [˙A/x]˙ywBywA/xB
4 3 exbii w[˙A/x]˙ywBwywA/xB
5 2 4 bitri [˙A/x]˙wywBwywA/xB
6 5 abbii y|[˙A/x]˙wywB=y|wywA/xB
7 1 6 eqtri A/xy|wywB=y|wywA/xB
8 dfdm3 domB=y|wywB
9 8 csbeq2i A/xdomB=A/xy|wywB
10 dfdm3 domA/xB=y|wywA/xB
11 7 9 10 3eqtr4i A/xdomB=domA/xB