Metamath Proof Explorer


Theorem csbeq2

Description: Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018)

Ref Expression
Assertion csbeq2 xB=CA/xB=A/xC

Proof

Step Hyp Ref Expression
1 eleq2 B=CyByC
2 1 alimi xB=CxyByC
3 sbcbi2 xyByC[˙A/x]˙yB[˙A/x]˙yC
4 2 3 syl xB=C[˙A/x]˙yB[˙A/x]˙yC
5 4 abbidv xB=Cy|[˙A/x]˙yB=y|[˙A/x]˙yC
6 df-csb A/xB=y|[˙A/x]˙yB
7 df-csb A/xC=y|[˙A/x]˙yC
8 5 6 7 3eqtr4g xB=CA/xB=A/xC