Metamath Proof Explorer


Theorem csbie2t

Description: Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 ). (Contributed by NM, 3-Sep-2007) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses csbie2t.1 AV
csbie2t.2 BV
Assertion csbie2t xyx=Ay=BC=DA/xB/yC=D

Proof

Step Hyp Ref Expression
1 csbie2t.1 AV
2 csbie2t.2 BV
3 nfa1 xxyx=Ay=BC=D
4 nfcvd xyx=Ay=BC=D_xD
5 1 a1i xyx=Ay=BC=DAV
6 nfa2 yxyx=Ay=BC=D
7 nfv yx=A
8 6 7 nfan yxyx=Ay=BC=Dx=A
9 nfcvd xyx=Ay=BC=Dx=A_yD
10 2 a1i xyx=Ay=BC=Dx=ABV
11 2sp xyx=Ay=BC=Dx=Ay=BC=D
12 11 impl xyx=Ay=BC=Dx=Ay=BC=D
13 8 9 10 12 csbiedf xyx=Ay=BC=Dx=AB/yC=D
14 3 4 5 13 csbiedf xyx=Ay=BC=DA/xB/yC=D