Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Proper substitution of classes for sets into classes csbief  
				
		 
		
			
		 
		Description:   Conversion of implicit substitution to explicit substitution into a
       class.  (Contributed by NM , 26-Nov-2005)   (Revised by Mario Carneiro , 13-Oct-2016) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						csbief.1   ⊢   A  ∈  V       
					 
					
						csbief.2   ⊢    Ⅎ   _  x  C       
					 
					
						csbief.3    ⊢   x  =  A    →   B  =  C         
					 
				
					Assertion 
					csbief   ⊢   ⦋  A  /  x ⦌  B =  C       
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							csbief.1  ⊢   A  ∈  V       
						
							2 
								
							 
							csbief.2  ⊢    Ⅎ   _  x  C       
						
							3 
								
							 
							csbief.3   ⊢   x  =  A    →   B  =  C         
						
							4 
								2 
							 
							a1i   ⊢   A  ∈  V    →    Ⅎ   _  x  C         
						
							5 
								4  3 
							 
							csbiegf   ⊢   A  ∈  V    →   ⦋  A  /  x ⦌  B =  C         
						
							6 
								1  5 
							 
							ax-mp  ⊢   ⦋  A  /  x ⦌  B =  C