Metamath Proof Explorer


Theorem csbov

Description: Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018)

Ref Expression
Assertion csbov A/xBFC=BA/xFC

Proof

Step Hyp Ref Expression
1 csbov123 A/xBFC=A/xBA/xFA/xC
2 csbconstg AVA/xB=B
3 csbconstg AVA/xC=C
4 2 3 oveq12d AVA/xBA/xFA/xC=BA/xFC
5 0fv BC=
6 df-ov BC=BC
7 0ov A/xBA/xC=
8 5 6 7 3eqtr4ri A/xBA/xC=BC
9 csbprc ¬AVA/xF=
10 9 oveqd ¬AVA/xBA/xFA/xC=A/xBA/xC
11 9 oveqd ¬AVBA/xFC=BC
12 8 10 11 3eqtr4a ¬AVA/xBA/xFA/xC=BA/xFC
13 4 12 pm2.61i A/xBA/xFA/xC=BA/xFC
14 1 13 eqtri A/xBFC=BA/xFC