Metamath Proof Explorer


Theorem cshwsidrepswmod0

Description: If cyclically shifting a word of length being a prime number results in the word itself, the shift must be either by 0 (modulo the length of the word) or the word must be a "repeated symbol word". (Contributed by AV, 18-May-2018) (Revised by AV, 10-Nov-2018)

Ref Expression
Assertion cshwsidrepswmod0 WWordVWLWcyclShiftL=WLmodW=0W=W0repeatSW

Proof

Step Hyp Ref Expression
1 orc LmodW=0LmodW=0W=W0repeatSW
2 1 2a1d LmodW=0WWordVWLWcyclShiftL=WLmodW=0W=W0repeatSW
3 3simpa WWordVWLWWordVW
4 3 ad2antlr LmodW0WWordVWLWcyclShiftL=WWWordVW
5 simplr3 LmodW0WWordVWLWcyclShiftL=WL
6 simpll LmodW0WWordVWLWcyclShiftL=WLmodW0
7 simpr LmodW0WWordVWLWcyclShiftL=WWcyclShiftL=W
8 cshwsidrepsw WWordVWLLmodW0WcyclShiftL=WW=W0repeatSW
9 8 imp WWordVWLLmodW0WcyclShiftL=WW=W0repeatSW
10 4 5 6 7 9 syl13anc LmodW0WWordVWLWcyclShiftL=WW=W0repeatSW
11 10 olcd LmodW0WWordVWLWcyclShiftL=WLmodW=0W=W0repeatSW
12 11 exp31 LmodW0WWordVWLWcyclShiftL=WLmodW=0W=W0repeatSW
13 2 12 pm2.61ine WWordVWLWcyclShiftL=WLmodW=0W=W0repeatSW