Metamath Proof Explorer


Theorem cusgrop

Description: A complete simple graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020)

Ref Expression
Assertion cusgrop GComplUSGraphVtxGiEdgGComplUSGraph

Proof

Step Hyp Ref Expression
1 usgrop GUSGraphVtxGiEdgGUSGraph
2 cplgrop GComplGraphVtxGiEdgGComplGraph
3 1 2 anim12i GUSGraphGComplGraphVtxGiEdgGUSGraphVtxGiEdgGComplGraph
4 iscusgr GComplUSGraphGUSGraphGComplGraph
5 iscusgr VtxGiEdgGComplUSGraphVtxGiEdgGUSGraphVtxGiEdgGComplGraph
6 3 4 5 3imtr4i GComplUSGraphVtxGiEdgGComplUSGraph