| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrop |
|- ( G e. USGraph -> <. ( Vtx ` G ) , ( iEdg ` G ) >. e. USGraph ) |
| 2 |
|
cplgrop |
|- ( G e. ComplGraph -> <. ( Vtx ` G ) , ( iEdg ` G ) >. e. ComplGraph ) |
| 3 |
1 2
|
anim12i |
|- ( ( G e. USGraph /\ G e. ComplGraph ) -> ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. USGraph /\ <. ( Vtx ` G ) , ( iEdg ` G ) >. e. ComplGraph ) ) |
| 4 |
|
iscusgr |
|- ( G e. ComplUSGraph <-> ( G e. USGraph /\ G e. ComplGraph ) ) |
| 5 |
|
iscusgr |
|- ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. ComplUSGraph <-> ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. USGraph /\ <. ( Vtx ` G ) , ( iEdg ` G ) >. e. ComplGraph ) ) |
| 6 |
3 4 5
|
3imtr4i |
|- ( G e. ComplUSGraph -> <. ( Vtx ` G ) , ( iEdg ` G ) >. e. ComplUSGraph ) |