Metamath Proof Explorer


Theorem cusgrexilem1

Description: Lemma 1 for cusgrexi . (Contributed by Alexander van der Vekens, 12-Jan-2018)

Ref Expression
Hypothesis usgrexi.p
|- P = { x e. ~P V | ( # ` x ) = 2 }
Assertion cusgrexilem1
|- ( V e. W -> ( _I |` P ) e. _V )

Proof

Step Hyp Ref Expression
1 usgrexi.p
 |-  P = { x e. ~P V | ( # ` x ) = 2 }
2 pwexg
 |-  ( V e. W -> ~P V e. _V )
3 1 2 rabexd
 |-  ( V e. W -> P e. _V )
4 resiexg
 |-  ( P e. _V -> ( _I |` P ) e. _V )
5 3 4 syl
 |-  ( V e. W -> ( _I |` P ) e. _V )