Description: Lemma 1 for cusgrexi . (Contributed by Alexander van der Vekens, 12-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrexi.p | |- P = { x e. ~P V | ( # ` x ) = 2 } |
|
| Assertion | cusgrexilem1 | |- ( V e. W -> ( _I |` P ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexi.p | |- P = { x e. ~P V | ( # ` x ) = 2 } |
|
| 2 | pwexg | |- ( V e. W -> ~P V e. _V ) |
|
| 3 | 1 2 | rabexd | |- ( V e. W -> P e. _V ) |
| 4 | resiexg | |- ( P e. _V -> ( _I |` P ) e. _V ) |
|
| 5 | 3 4 | syl | |- ( V e. W -> ( _I |` P ) e. _V ) |