| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrexi.p |
|- P = { x e. ~P V | ( # ` x ) = 2 } |
| 2 |
|
f1oi |
|- ( _I |` P ) : P -1-1-onto-> P |
| 3 |
|
f1of1 |
|- ( ( _I |` P ) : P -1-1-onto-> P -> ( _I |` P ) : P -1-1-> P ) |
| 4 |
2 3
|
ax-mp |
|- ( _I |` P ) : P -1-1-> P |
| 5 |
|
dmresi |
|- dom ( _I |` P ) = P |
| 6 |
|
f1eq2 |
|- ( dom ( _I |` P ) = P -> ( ( _I |` P ) : dom ( _I |` P ) -1-1-> P <-> ( _I |` P ) : P -1-1-> P ) ) |
| 7 |
5 6
|
ax-mp |
|- ( ( _I |` P ) : dom ( _I |` P ) -1-1-> P <-> ( _I |` P ) : P -1-1-> P ) |
| 8 |
4 7
|
mpbir |
|- ( _I |` P ) : dom ( _I |` P ) -1-1-> P |
| 9 |
1
|
eqcomi |
|- { x e. ~P V | ( # ` x ) = 2 } = P |
| 10 |
|
f1eq3 |
|- ( { x e. ~P V | ( # ` x ) = 2 } = P -> ( ( _I |` P ) : dom ( _I |` P ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } <-> ( _I |` P ) : dom ( _I |` P ) -1-1-> P ) ) |
| 11 |
9 10
|
mp1i |
|- ( V e. W -> ( ( _I |` P ) : dom ( _I |` P ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } <-> ( _I |` P ) : dom ( _I |` P ) -1-1-> P ) ) |
| 12 |
8 11
|
mpbiri |
|- ( V e. W -> ( _I |` P ) : dom ( _I |` P ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |