Step |
Hyp |
Ref |
Expression |
1 |
|
usgrexi.p |
|- P = { x e. ~P V | ( # ` x ) = 2 } |
2 |
|
f1oi |
|- ( _I |` P ) : P -1-1-onto-> P |
3 |
|
f1of1 |
|- ( ( _I |` P ) : P -1-1-onto-> P -> ( _I |` P ) : P -1-1-> P ) |
4 |
2 3
|
ax-mp |
|- ( _I |` P ) : P -1-1-> P |
5 |
|
dmresi |
|- dom ( _I |` P ) = P |
6 |
|
f1eq2 |
|- ( dom ( _I |` P ) = P -> ( ( _I |` P ) : dom ( _I |` P ) -1-1-> P <-> ( _I |` P ) : P -1-1-> P ) ) |
7 |
5 6
|
ax-mp |
|- ( ( _I |` P ) : dom ( _I |` P ) -1-1-> P <-> ( _I |` P ) : P -1-1-> P ) |
8 |
4 7
|
mpbir |
|- ( _I |` P ) : dom ( _I |` P ) -1-1-> P |
9 |
1
|
eqcomi |
|- { x e. ~P V | ( # ` x ) = 2 } = P |
10 |
|
f1eq3 |
|- ( { x e. ~P V | ( # ` x ) = 2 } = P -> ( ( _I |` P ) : dom ( _I |` P ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } <-> ( _I |` P ) : dom ( _I |` P ) -1-1-> P ) ) |
11 |
9 10
|
mp1i |
|- ( V e. W -> ( ( _I |` P ) : dom ( _I |` P ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } <-> ( _I |` P ) : dom ( _I |` P ) -1-1-> P ) ) |
12 |
8 11
|
mpbiri |
|- ( V e. W -> ( _I |` P ) : dom ( _I |` P ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |