| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrexi.p |
⊢ 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } |
| 2 |
|
f1oi |
⊢ ( I ↾ 𝑃 ) : 𝑃 –1-1-onto→ 𝑃 |
| 3 |
|
f1of1 |
⊢ ( ( I ↾ 𝑃 ) : 𝑃 –1-1-onto→ 𝑃 → ( I ↾ 𝑃 ) : 𝑃 –1-1→ 𝑃 ) |
| 4 |
2 3
|
ax-mp |
⊢ ( I ↾ 𝑃 ) : 𝑃 –1-1→ 𝑃 |
| 5 |
|
dmresi |
⊢ dom ( I ↾ 𝑃 ) = 𝑃 |
| 6 |
|
f1eq2 |
⊢ ( dom ( I ↾ 𝑃 ) = 𝑃 → ( ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ 𝑃 ↔ ( I ↾ 𝑃 ) : 𝑃 –1-1→ 𝑃 ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ 𝑃 ↔ ( I ↾ 𝑃 ) : 𝑃 –1-1→ 𝑃 ) |
| 8 |
4 7
|
mpbir |
⊢ ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ 𝑃 |
| 9 |
1
|
eqcomi |
⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = 𝑃 |
| 10 |
|
f1eq3 |
⊢ ( { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = 𝑃 → ( ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ 𝑃 ) ) |
| 11 |
9 10
|
mp1i |
⊢ ( 𝑉 ∈ 𝑊 → ( ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ 𝑃 ) ) |
| 12 |
8 11
|
mpbiri |
⊢ ( 𝑉 ∈ 𝑊 → ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |