Metamath Proof Explorer


Theorem cvgcmpub

Description: An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014)

Ref Expression
Hypotheses cvgcmp.1 Z = M
cvgcmp.2 φ N Z
cvgcmp.3 φ k Z F k
cvgcmp.4 φ k Z G k
cvgcmpub.5 φ seq M + F A
cvgcmpub.6 φ seq M + G B
cvgcmpub.7 φ k Z G k F k
Assertion cvgcmpub φ B A

Proof

Step Hyp Ref Expression
1 cvgcmp.1 Z = M
2 cvgcmp.2 φ N Z
3 cvgcmp.3 φ k Z F k
4 cvgcmp.4 φ k Z G k
5 cvgcmpub.5 φ seq M + F A
6 cvgcmpub.6 φ seq M + G B
7 cvgcmpub.7 φ k Z G k F k
8 2 1 eleqtrdi φ N M
9 eluzel2 N M M
10 8 9 syl φ M
11 1 10 4 serfre φ seq M + G : Z
12 11 ffvelrnda φ n Z seq M + G n
13 1 10 3 serfre φ seq M + F : Z
14 13 ffvelrnda φ n Z seq M + F n
15 simpr φ n Z n Z
16 15 1 eleqtrdi φ n Z n M
17 simpl φ n Z φ
18 elfzuz k M n k M
19 18 1 eleqtrrdi k M n k Z
20 17 19 4 syl2an φ n Z k M n G k
21 17 19 3 syl2an φ n Z k M n F k
22 17 19 7 syl2an φ n Z k M n G k F k
23 16 20 21 22 serle φ n Z seq M + G n seq M + F n
24 1 10 6 5 12 14 23 climle φ B A