Metamath Proof Explorer


Theorem cvrle

Description: The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses cvrle.b B=BaseK
cvrle.l ˙=K
cvrle.c C=K
Assertion cvrle KAXBYBXCYX˙Y

Proof

Step Hyp Ref Expression
1 cvrle.b B=BaseK
2 cvrle.l ˙=K
3 cvrle.c C=K
4 eqid <K=<K
5 1 4 3 cvrlt KAXBYBXCYX<KY
6 2 4 pltval KAXBYBX<KYX˙YXY
7 6 simprbda KAXBYBX<KYX˙Y
8 5 7 syldan KAXBYBXCYX˙Y