Metamath Proof Explorer


Theorem cvrnrefN

Description: The covers relation is not reflexive. ( cvnref analog.) (Contributed by NM, 1-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cvrne.b B=BaseK
cvrne.c C=K
Assertion cvrnrefN KAXB¬XCX

Proof

Step Hyp Ref Expression
1 cvrne.b B=BaseK
2 cvrne.c C=K
3 eqid X=X
4 simpll KAXBXCXKA
5 simplr KAXBXCXXB
6 simpr KAXBXCXXCX
7 1 2 cvrne KAXBXBXCXXX
8 4 5 5 6 7 syl31anc KAXBXCXXX
9 8 ex KAXBXCXXX
10 9 necon2bd KAXBX=X¬XCX
11 3 10 mpi KAXB¬XCX