Metamath Proof Explorer


Theorem cvrcmp

Description: If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012)

Ref Expression
Hypotheses cvrcmp.b B=BaseK
cvrcmp.l ˙=K
cvrcmp.c C=K
Assertion cvrcmp KPosetXBYBZBZCXZCYX˙YX=Y

Proof

Step Hyp Ref Expression
1 cvrcmp.b B=BaseK
2 cvrcmp.l ˙=K
3 cvrcmp.c C=K
4 simpl1 KPosetXBYBZBZCXZCYX˙YKPoset
5 simpl23 KPosetXBYBZBZCXZCYX˙YZB
6 simpl21 KPosetXBYBZBZCXZCYX˙YXB
7 simpl3l KPosetXBYBZBZCXZCYX˙YZCX
8 1 3 cvrne KPosetZBXBZCXZX
9 4 5 6 7 8 syl31anc KPosetXBYBZBZCXZCYX˙YZX
10 1 2 3 cvrle KPosetZBXBZCXZ˙X
11 4 5 6 7 10 syl31anc KPosetXBYBZBZCXZCYX˙YZ˙X
12 simpr KPosetXBYBZBZCXZCYX˙YX˙Y
13 simpl22 KPosetXBYBZBZCXZCYX˙YYB
14 simpl3r KPosetXBYBZBZCXZCYX˙YZCY
15 1 2 3 cvrnbtwn4 KPosetZBYBXBZCYZ˙XX˙YZ=XX=Y
16 4 5 13 6 14 15 syl131anc KPosetXBYBZBZCXZCYX˙YZ˙XX˙YZ=XX=Y
17 11 12 16 mpbi2and KPosetXBYBZBZCXZCYX˙YZ=XX=Y
18 neor Z=XX=YZXX=Y
19 17 18 sylib KPosetXBYBZBZCXZCYX˙YZXX=Y
20 9 19 mpd KPosetXBYBZBZCXZCYX˙YX=Y
21 20 ex KPosetXBYBZBZCXZCYX˙YX=Y
22 simp1 KPosetXBYBZBZCXZCYKPoset
23 simp21 KPosetXBYBZBZCXZCYXB
24 1 2 posref KPosetXBX˙X
25 22 23 24 syl2anc KPosetXBYBZBZCXZCYX˙X
26 breq2 X=YX˙XX˙Y
27 25 26 syl5ibcom KPosetXBYBZBZCXZCYX=YX˙Y
28 21 27 impbid KPosetXBYBZBZCXZCYX˙YX=Y