Metamath Proof Explorer


Theorem cvrcmp

Description: If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012)

Ref Expression
Hypotheses cvrcmp.b 𝐵 = ( Base ‘ 𝐾 )
cvrcmp.l = ( le ‘ 𝐾 )
cvrcmp.c 𝐶 = ( ⋖ ‘ 𝐾 )
Assertion cvrcmp ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) → ( 𝑋 𝑌𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 cvrcmp.b 𝐵 = ( Base ‘ 𝐾 )
2 cvrcmp.l = ( le ‘ 𝐾 )
3 cvrcmp.c 𝐶 = ( ⋖ ‘ 𝐾 )
4 simpl1 ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) ∧ 𝑋 𝑌 ) → 𝐾 ∈ Poset )
5 simpl23 ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) ∧ 𝑋 𝑌 ) → 𝑍𝐵 )
6 simpl21 ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) ∧ 𝑋 𝑌 ) → 𝑋𝐵 )
7 simpl3l ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) ∧ 𝑋 𝑌 ) → 𝑍 𝐶 𝑋 )
8 1 3 cvrne ( ( ( 𝐾 ∈ Poset ∧ 𝑍𝐵𝑋𝐵 ) ∧ 𝑍 𝐶 𝑋 ) → 𝑍𝑋 )
9 4 5 6 7 8 syl31anc ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) ∧ 𝑋 𝑌 ) → 𝑍𝑋 )
10 1 2 3 cvrle ( ( ( 𝐾 ∈ Poset ∧ 𝑍𝐵𝑋𝐵 ) ∧ 𝑍 𝐶 𝑋 ) → 𝑍 𝑋 )
11 4 5 6 7 10 syl31anc ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) ∧ 𝑋 𝑌 ) → 𝑍 𝑋 )
12 simpr ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) ∧ 𝑋 𝑌 ) → 𝑋 𝑌 )
13 simpl22 ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) ∧ 𝑋 𝑌 ) → 𝑌𝐵 )
14 simpl3r ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) ∧ 𝑋 𝑌 ) → 𝑍 𝐶 𝑌 )
15 1 2 3 cvrnbtwn4 ( ( 𝐾 ∈ Poset ∧ ( 𝑍𝐵𝑌𝐵𝑋𝐵 ) ∧ 𝑍 𝐶 𝑌 ) → ( ( 𝑍 𝑋𝑋 𝑌 ) ↔ ( 𝑍 = 𝑋𝑋 = 𝑌 ) ) )
16 4 5 13 6 14 15 syl131anc ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) ∧ 𝑋 𝑌 ) → ( ( 𝑍 𝑋𝑋 𝑌 ) ↔ ( 𝑍 = 𝑋𝑋 = 𝑌 ) ) )
17 11 12 16 mpbi2and ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) ∧ 𝑋 𝑌 ) → ( 𝑍 = 𝑋𝑋 = 𝑌 ) )
18 neor ( ( 𝑍 = 𝑋𝑋 = 𝑌 ) ↔ ( 𝑍𝑋𝑋 = 𝑌 ) )
19 17 18 sylib ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) ∧ 𝑋 𝑌 ) → ( 𝑍𝑋𝑋 = 𝑌 ) )
20 9 19 mpd ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) ∧ 𝑋 𝑌 ) → 𝑋 = 𝑌 )
21 20 ex ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) → ( 𝑋 𝑌𝑋 = 𝑌 ) )
22 simp1 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) → 𝐾 ∈ Poset )
23 simp21 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) → 𝑋𝐵 )
24 1 2 posref ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → 𝑋 𝑋 )
25 22 23 24 syl2anc ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) → 𝑋 𝑋 )
26 breq2 ( 𝑋 = 𝑌 → ( 𝑋 𝑋𝑋 𝑌 ) )
27 25 26 syl5ibcom ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) → ( 𝑋 = 𝑌𝑋 𝑌 ) )
28 21 27 impbid ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ( 𝑍 𝐶 𝑋𝑍 𝐶 𝑌 ) ) → ( 𝑋 𝑌𝑋 = 𝑌 ) )