Metamath Proof Explorer


Theorem cvrcmp2

Description: If two lattice elements covered by a third are comparable, then they are equal. (Contributed by NM, 20-Jun-2012)

Ref Expression
Hypotheses cvrcmp.b B=BaseK
cvrcmp.l ˙=K
cvrcmp.c C=K
Assertion cvrcmp2 KOPXBYBZBXCZYCZX˙YX=Y

Proof

Step Hyp Ref Expression
1 cvrcmp.b B=BaseK
2 cvrcmp.l ˙=K
3 cvrcmp.c C=K
4 opposet KOPKPoset
5 4 3ad2ant1 KOPXBYBZBXCZYCZKPoset
6 simp1 KOPXBYBZBXCZYCZKOP
7 simp22 KOPXBYBZBXCZYCZYB
8 eqid ocK=ocK
9 1 8 opoccl KOPYBocKYB
10 6 7 9 syl2anc KOPXBYBZBXCZYCZocKYB
11 simp21 KOPXBYBZBXCZYCZXB
12 1 8 opoccl KOPXBocKXB
13 6 11 12 syl2anc KOPXBYBZBXCZYCZocKXB
14 simp23 KOPXBYBZBXCZYCZZB
15 1 8 opoccl KOPZBocKZB
16 6 14 15 syl2anc KOPXBYBZBXCZYCZocKZB
17 1 8 3 cvrcon3b KOPXBZBXCZocKZCocKX
18 17 3adant3r2 KOPXBYBZBXCZocKZCocKX
19 1 8 3 cvrcon3b KOPYBZBYCZocKZCocKY
20 19 3adant3r1 KOPXBYBZBYCZocKZCocKY
21 18 20 anbi12d KOPXBYBZBXCZYCZocKZCocKXocKZCocKY
22 21 biimp3a KOPXBYBZBXCZYCZocKZCocKXocKZCocKY
23 22 ancomd KOPXBYBZBXCZYCZocKZCocKYocKZCocKX
24 1 2 3 cvrcmp KPosetocKYBocKXBocKZBocKZCocKYocKZCocKXocKY˙ocKXocKY=ocKX
25 5 10 13 16 23 24 syl131anc KOPXBYBZBXCZYCZocKY˙ocKXocKY=ocKX
26 1 2 8 oplecon3b KOPXBYBX˙YocKY˙ocKX
27 6 11 7 26 syl3anc KOPXBYBZBXCZYCZX˙YocKY˙ocKX
28 1 8 opcon3b KOPXBYBX=YocKY=ocKX
29 6 11 7 28 syl3anc KOPXBYBZBXCZYCZX=YocKY=ocKX
30 25 27 29 3bitr4d KOPXBYBZBXCZYCZX˙YX=Y